

OMEGAnetSM On-Line Service
http://www.omega.com

Internet e-mail
info@omega.com

Servicing North America:
USA: One Omega Drive, Box 4047

Stamford, CT 06907-0047
Tel: (203) 359-1660
e-mail: info@omega.com

FAX: (203) 359-7700

Canada: 976 Berger
Laval (Quebec) H7L 5A1
Tel: (514) 856-6928
e-mail: canada@omega.com

FAX: (514) 856-6886

For immediate technical or application assistance:
USA and Canada: Sales Service: 1-800-826-6342 / 1-800-TC-OMEGASM

Customer Service: 1-800-622-2378 / 1-800-622-BESTSM

Engineering Service: 1-800-872-9436 / 1-800-USA-WHENSM

TELEX: 996404 EASYLINK: 62968934 CABLE: OMEGA
Mexico and
Latin America: Tel: (95) 800-TC-OMEGASM

En Espanol: (95) 203-359-7803
FAX: (95) 203-359-7807
e-mail: espanol@omega.com

Servicing Europe:
Benelux: Postbus 8034, 1180 LA Amstelveen, The Netherlands

Tel: (31) 20 6418405
Toll Free in Benelux: 06 0993344
e-mail: nl@omega.com

FAX: (31) 20 6434643

Czech Republic: ul. Rude armady 1868
733 01 Karvina-Hranice
Tel: 420 (69) 6311899
e-mail:czech@omega.com

FAX: 420 (69) 6311114

France: 9, rue Denis Papin, 78190 Trappes
Tel: (33) 130-621-400
Toll Free in France: 0800-4-06342
e-mail: france@omega.com

FAX: (33) 130-699-120

Germany/Austria: Daimlerstrasse 26, D-75392 Deckenpfronn, Germany
Tel: 49 (07056) 3017
Toll Free in Germany: 0130 11 21 66
e-mail: germany@omega.com

FAX: 49 (07056) 8540

United Kingdom: 25 Swannington Road,
Broughton Astley, Leicestershire,
LE9 6TU, England
Tel: 44 (1455) 285520
FAX: 44 (1455) 283912

P.O. Box 7, Omega Drive,
Irlam, Manchester,
M44 5EX, England
Tel: 44 (161) 777-6611
FAX: 44 (161) 777-6622

Toll Free in England: 0800-488-488
e-mail: uk@omega.com

It is the policy of OMEGA to comply with all worldwide safety and EMC/EMI regulations that
apply. OMEGA is constantly pursuing certification of its products to the European New Approach
Directives. OMEGA will add the CE mark to every appropriate device upon certification.

The information contained in this document is believed to be correct but OMEGA Engineering, Inc. accepts
no liability for any errors it contains, and reserves the right to alter specifications without notice.
WARNING: These products are not designed for use in, and should not be used for, patient-connected applications.

TempBook User’s Manual i

How To Use This Manual
This manual explains the setup and operation of the TempBook data acquisition system. This manual
is divided into a table of contents, 11 chapters, and 1 appendix as follows:

Chapter 1 - Introduction and Quick Start begins with an overview description and a listing of system
specifications. If you are generally familiar with this type of equipment, the Quick Start section
shows how to hook up a simple system; however, most users will prefer the more detailed startup
procedures in chapter 2.

Chapter 2 - Installation, Configuration, and Calibration describes panel switches, indicators,
connectors, hardware hookups, software installation, configuration, and calibration.

Chapter 3 - Using TempView (16-bit) explains the use and features of TempView (including
PostView). Screen prints show you the pull-down menus, toolbars, charts, and parameter fields
discussed in the text.

Chapter 4 - Using DaqView (32-bit) explains the use and features of DaqView (including PostView
and DaqViewXL). Screen prints show you the pull-down menus, toolbars, charts, and parameter
fields discussed in the text. A guided tour gives you hands-on experience with simple examples.

Chapter 5 - Programmer’s Guide explains how to custom-program for your application. Various
concerns are discussed; e.g., a comparison of standard and enhanced APIs and language support.

Chapter 6 - Standard API Programming of the TempBook With C describes several example
programs using the standard API with the C language.

Chapter 7 - Software Calibration and Zero Compensation describes the commands and parameters
related to calibration and zero compensation. This chapter organizes and supplements related
sections of the tbkCommand Reference chapter.

Chapter 8 - Thermocouple Measurement describes the commands and parameters related to
thermocouple measurement. This chapter organizes and supplements related sections of the
tbkCommand Reference chapter.

Chapter 9 - tbkCommand Reference (Standard API) describes the commands and parameters of the
“standard” API including useful reference tables.

Chapter 10 - Programming Models for Enhanced API describes the fundamental building blocks for
TempBook data acquisition software. These programming blocks can then be arranged and
filled with your parameters to make your system do as you please. Program excerpts illustrate
the basic concepts and can often (with modifications) be used in your code.

Chapter 11 - daqCommand Reference (Enhanced API) describes the commands and parameters of
the “enhanced” API including useful reference tables.

Appendix A- Differential Measurement Configurations describes setups for “floating” and
“referenced” differential signal input connections.

CAUTIONCAUTION
Using this equipment in ways other than described in this manual can cause
personal injury or equipment damage. Before setting up and using your
equipment, you should read all documentation that covers your system. Pay
special attention to cautions and warnings formatted like this one.

Software Reference Note:
16-bit PC users can use TempView out-of-the-box (see chapter 3) or program their
own application. Programmers, see chapters 5 and 6-9; chapters 6 to 8 show examples
and explain how to perform common tasks with the standard API detailed in chapter 9.
32-bit PC users can use DaqView out-of-the-box (see chapter 4) or program their own
application. Programmers, see chapters 5 and 10-11; chapter 10 explains programming
models for the enhanced API detailed in chapter 11.

TempBook User’s Manualii

Table of Contents
1 Introduction and Quick Start

Overview--- 1-1
Description -- 1-1
Available Accessories -- 1-2
Specifications-- 1-2
Quick Start--- 1-3

Signal Connection --- 1-3
PC Connection --- 1-3
Power Connection and Switch --- 1-4
Software Installation -- 1-4
Using DaqView --- 1-4

2 Installation, Configuration, and Calibration
Inspection -- 2-1
Panel Connectors and Indicators --- 2-1
Termination Card and I/O Connectors--- 2-2
Internal Configuration-- 2-3

Watchdog Timer Enable/Disable (JP8) --- 2-3
Time Base Selection (JP9)-- 2-3

Hardware Installation -- 2-3
Rechargeable Battery Module (DBK30A) -- 2-4

Charging the Battery Modules --- 2-4
Battery Module Connection -- 2-5

Parallel Port Capabilities -- 2-5
TempBook Software Installation --- 2-6

Making a Backup Copy --- 2-6
DOS Installation --- 2-6
Installation Under Windows 3.1 --- 2-6

Running TempTest--- 2-7
Installation Under Windows 95 and Windows NT-- 2-7
TempBook Configuration Under Windows 95/NT --- 2-8

Connection Troubleshooting (Windows 95/NT) -- 2-10
Calibration of TempBook--- 2-11

Calibration Constants File Installation--- 2-11
Hardware Calibration -- 2-11

3 Using TempView (16-bit)
Application Startup--- 3-1
TempView Components --- 3-2

Analog Input Spreadsheet --- 3-2
Acquisition Configuration-- 3-3

Counter/Timer Window-- 3-4
Digital I/O Window -- 3-4

Charts and the Spreadsheet's "Reading" column --- 3-4
TempView Menu Items -- 3-5

File --- 3-5
Edit --- 3-5
Select Device -- 3-6
Window -- 3-6
Acquisition -- 3-6
Charts -- 3-6

Using PostView--- 3-6
The PostView Timebase --- 3-8
PostView Menu Items-- 3-8

4 Using DaqView (32-bit)
Overview--- 4-1
DaqView’s Main Window--- 4-1
Starting DaqView--- 4-2

Beginner’s Tour of DaqView --- 4-2
Analog Input Spreadsheet --- 4-3
Acquisition Configuration--- 4-4
Pull-Down Menu Items -- 4-4

File --- 4-4
Edit --- 4-5
Acquire --- 4-5
Window -- 4-5

TempBook User’s Manual iii

Device -- 4-6
 The Configure System Hardware Window--- 4-6
Help--- 4-7

Toolbar Items-- 4-7
Make All Channels Active (or Inactive)--- 4-7
Charts--- 4-7
Bar Graph Meters --- 4-8
Analog Meters--- 4-8
Digital Meters --- 4-8
Properties of Meter Windows--- 4-9
Start (or Stop) All Indicators -- 4-9
Analog Output Window --- 4-9
Digital I/O Window --- 4-10
Counter/Timer Window--- 4-10
Arbitrary Waveform Window -- 4-11
Enable Input Reading Column--- 4-12
Go-- 4-12

PostView 1.5 --- 4-13
PostView Menu Items--- 4-14
PostView Time Base -- 4-15
Data File Accessibility -- 4-15

DaqViewXL -- 4-16
Program Requirements-- 4-16
Installation of DaqViewXL Software --- 4-16
Running DaqViewXL for the First Time --- 4-16
Removing DaqViewXL from Excel--- 4-18
Basic Function of DaqViewXL-- 4-18

Configuring an Acquisition -- 4-19
Real-Time Charting-- 4-19
Data Header -- 4-20
Analog Output-- 4-20
Digital I/O and Counter-Timers --- 4-21
Hardware Support --- 4-21

Hints and Tips for DaqViewXL --- 4-21

5 Programmer’s Guide
A Programmer’s View of TempBook Operations -- 5-1
Driver Options -- 5-3

Standard API (tbk…)-- 5-3
Enhanced API (daq…) -- 5-3
Language Support --- 5-3

6 Standard API Programming of the TempBook With C
Accessing TempBook from a Windows Program -- 6-1
Accessing TempBook from a C for Windows Program --- 6-1
High-Level Analog Input -- 6-1
Low-Level Analog Input -- 6-2
Analog Input in the Background-- 6-2
General Purpose Digital I/O Functions -- 6-4
High-Speed Digital Input -- 6-4
Counter/Timer Functions -- 6-5
High-Level Thermocouple Data Acquisition --- 6-6
Thermocouple Linearization -- 6-7
Sample Programs --- 6-8

High-Level Analog Input --- 6-8
Low-Level Analog Input-- 6-9
Analog Input in the Background-- 6-10
General Purpose Digital I/O--- 6-11
High-Speed Digital Input -- 6-12
Counter Timer Functions -- 6-13
High-Level Thermocouple Measurement --- 6-14
Low-Level Thermocouple Linearization -- 6-15

Command Summary, C Language (Windows) -- 6-17

7 Software Calibration and Zero Compensation
Software Calibration --- 7-1

Initializing the Calibration Constants --- 7-1
Calibration Setup and Conversion--- 7-2

TempBook User’s Manualiv

Calibration Example--- 7-2
Zero Compensation--- 7-3

Zero Compensation Example -- 7-4
Automatic Zero Compensation -- 7-5

8 Thermocouple Measurement
Low-Level Thermocouple Data Conversion Functions --- 8-1
High-Level Thermocouple Measurement Functions--- 8-3

Single-Channel Measurement (tbkRdTemp)--- 8-3
Multiple Measurements from a Single Channel (tbkRdTempN) -- 8-4
Multiple Channel Measurement (tbkRdTempScan) --- 8-4
Multiple Measurements from Multiple Channels (tbkRdTempScanN) ------------------------------- 8-4

9 tbkCommand Reference (Standard API)
Overview--- 9-1
Commands in Alphabetical Order -- 9-2
API Reference Tables --- 9-32

A/D Channel Descriptions--- 9-32
A/D Gain Definitions--- 9-32
A/D Trigger Source Definitions -- 9-32
Pretrigger Functions Trigger Source Definitions--- 9-33
Thermocouple Types --- 9-33
API Error Codes - C Languages -- 9-33
API Error Codes - QuickBASIC-- 9-34
API Error Codes - Turbo Pascal -- 9-35
API Error Codes - Visual Basic -- 9-36

10 Enhanced API Programming Models (TempBook)
Overview-- 10-1
Data Acquisition Environment--- 10-1

Application Programming Interface (API) -- 10-1
Enhanced vs Standard API -- 10-1
Hardware Capabilities and Constraints -- 10-1
Signal Environment -- 10-2

Basic Models --- 10-2
Initialization and Error Handling --- 10-3
Foreground Acquisition with One-Step Commands --- 10-5
Temperature Acquisition Using One-Step Commands -- 10-7
Counted Acquisition Using Linear Buffers --- 10-9
Indefinite Acquisition, Direct-To-Disk Using Circular Buffers -- 10-11
Multiple Hardware Scans, Software Triggering -- 10-14
Background Acquisition --- 10-16
Temperature Acquisition Using TC Conversion Functions--- 10-18
Double Buffering --- 10-21
Direct-To-Disk Transfers -- 10-23
Transfers With Driver-Allocated Buffers-- 10-26

Summary Guide of Selected Enhanced API Functions--- 10-28

11 daqCommand Reference (Enhanced API)
Overview-- 11-1
Commands in Alphabetical Order --- 11-2
API Reference Tables --- 11-35

Daq Device Property Definitions --- 11-36
Event-Handling Definitions --- 11-36
Hardware Information Definitions --- 11-36
ADC Trigger Source Definitions --- 11-37
ADC Miscellaneous Definitions-- 11-37
TempBook Definitions--- 11-38
General I/O Definitions -- 11-38
DaqTest Command Definitions --- 11-38
Calibration Input Signal Sources --- 11-38
API Error Codes -- 11-39

Appendix - Differential Measurement Configurations
Floating Differential--A-1
Referenced Differential --A-1

Introduction and Quick Start 1

TempBook User’s Manual Introduction and Quick Start 1-1

Overview
This chapter describes the TempBook in general terms including specifications. Also, a Quick Start can
help you get a simple system up and running (chapter 2 has more detailed installation instructions).

Description

TempBook/66 Block Diagram

The TempBook/66 adds voltage and thermocouple measurement capability to notebook PCs for portable
test applications. The TempBook also provides an effective alternative to plug-in boards for desktop PCs.
The TempBook provides 12-bit, 100 kHz data acquisition and can support up to 800 Kbyte/s data transfer
to a PC via an enhanced parallel port interface or PCMCIA link. The unit can also connect to a standard
parallel port and transfer readings directly to disk at up to 100K readings/s. As an external module with the
same footprint as a typical notebook PC, the TempBook can be attached directly under a notebook PC for
portability.

The TempBook has a built-in analog capability that permits it to measure 8 channels in a differential mode
or 16 channels in single-ended mode. Its on-board programmable-gain instrumentation amplifier can be set
to gains of ×1, 2, 5, 10, 20, 50, 100 or 200 on a per channel basis. Its A/D converter scans selected
channels at a constant 10 us/channel rate, minimizing the time skew between consecutive channels. The
time between the start of each scan sequence can be programmed to start immediately or at intervals of up
to 10 hours. The TempBook features a hardware-based digital/TTL trigger that minimizes trigger latency to
less than 10 us. The TempBook can also be triggered from a command from the PC.

The TempBook/66 can be powered by an included AC adapter, a standard 12V car battery, any +9 to 20
VDC source, or an optional rechargeable nickel-cadmium battery module (DBK30A). This makes it ideal
for field and remote data acquisition applications.

Software included with the TempBook includes: TempView (16-bit) and DaqView (32-bit) Windows-based
programs that allow you to set up your acquisition and save acquired data directly to disk. The package
also includes thermocouple linearization for direct readout of temperatures. PostView is a Windows-based
post application waveform display application that permits you to display previously acquired data.

1-2 Introduction and Quick Start TempBook User’s Manual

In addition, the TempBook/66 includes DOS drivers for Quick Basic, C, and Pascal; Windows drivers for
Visual Basic and C for Windows. Several graphically analysis and control software packages also support
the TempBook/66. These include DASYLab, Snap-Master, LABTECH NOTEBOOK and LabVIEW.

Available Accessories
Additional accessories that can be ordered for the TempBook/66 include:

• DBK35 PCMCIA interface card and cable
• DBK30A Rechargeable battery module

Specifications
General
Connector: Connects to a PC via an included parallel port cable;

user signals are connected via screw terminals on a removable
screw-terminal card.

Thermocouple Types: J, K, S, T, E, B, R & N
Input Ranges:
 Unipolar: .05, 0.1, 0.2, 0.5, 1, 2, 5 V
 Bipolar: ±0.25, .05, 0.1, 0.25, 0.5, 1, 2.5, 5 V
Analog Inputs: 8 differential or 16 single-ended voltage or 8

differential thermocouple inputs
Analog-to-Digital Converter: 12-bit with no missing codes,

unsigned binary output format.
Cold Junction Sensor Output: 100 mV/°C
Input Impedance: 100K/100M Ohm, Switch-selectable on a per-

channel basis in parallel with 100 pF
Input RC Filter -3dB Frequency: 15.9 kHz switch-selectable on a

per channel basis
Gain Accuracy: 0.1%
Maximum Input Voltage: ±15 V
CMRR (Input Stage): 90 dB typ, DC to 60 Hz
Offset: Software-compensated
Offset Drift: Software-compensated

Channel Sequencer
Depth: 512 locations
Speed: 10 µs per channel, fixed
Interval Between Scans: 10 µs to 10 hours, software-

programmable
Gains: Sequencer programmable on a per-channel basis.
Unipolar/Bipolar: Sequencer programmable on a per channel

basis.
Single-Ended/Differential: Software programmable for all

channels

Digital I/O
Inputs
 Number: 8 fixed as inputs
 Usage: General-purpose register addressable or high-speed

scanned via channel sequencer
 Type: TTL-compatible
 High Voltage: 2.0 V min
 Low Voltage: 0.8 V max
Outputs
 Number: 8 fixed as outputs
 Usage: General-purpose register addressable
 Type: TTL-compatible
 High Voltage: 3.0 V @ 2.5 mA source
 Low Voltage: 0.4V @ 2.5 mA sink
Trigger Input
 Type: TTL-compatible
 High Voltage: 2.0 V min
 Low Voltage: 0.8 V max

Counter/Timer Port
Device: 8254 (P0 only)
Number: 1 gate input, 1 clock input & 1 output
Clock: Internal 100 kHz or external up to 10 MHz
Usage: Register addressable
Type: TTL compatible
Input High Voltage: 2.0 V min
Input Low Voltage: 0.8 V max
Output High Voltage: 3.0 V @ 2.5 mA source
Output Low Voltage: 0.4 V @ 2.5 mA sink

Temperature
Thermocouple Accuracy
(TempBook/66 @ 0 to 50°C)

Thermocouple
Resolution (°C)

Type Min Max Accuracy
(°C) (°C) (<°C) (>°C) Type <0°C >0°C

J -200 760 0.9 0.9 J 1.2 0.5
K -200 1260 2.4 1.5 K 1.1 0.8
T -200 400 2.1 1.2 T 0.8 0.3
E -270 1000 2.1 1.3 E 1.9 0.9
N28 -270 400 1.2 1.2 N28 0.9 0.9
N14 - 1300 - 1.5 N14 - 5.0
S - 1780 - 2.4 S - 1.6
R - 1780 - 2.4 R - 1.5
B - 1820 - 2.7 B - 1.8

TempBook User’s Manual Introduction and Quick Start 1-3

Quick Start
For those users who wish to get their TempBook up and running as quickly as possible, this section
provides a brief explanation of the steps required. Note: unless already familiar with this type of system,
most users will need to read chapter 2, Installation and Configuration.

Signal Connection
The thermocouple and voltage input signals are fed to the TempBook through a removable termination
card. To remove this card, rotate the ejector handle with your thumb or finger. Once removed, the
thermocouple or voltage connections should be made as shown in the figure.

Signal Connections, Differential and Single-Ended

Note: When connecting thermocouple or other low-level signals in addition to high-level signals, connect
the low-level signals to the lowest numbered channels with connections in ascending order of signal
magnitude.

The DIP switches located on the termination card connect optional biasing resistors as well as input filters.
• For thermocouple or other differential inputs, these switches should be closed to provide the required

bias current path.
• For single-ended inputs these switches can be optionally opened or closed.

For further details, refer to section Termination Card and I/O Connectors in chapter 2.

PC Connection
The TempBook communicates with a laptop or desktop computer through the parallel printer port. Connect
the supplied cable to the computer’s parallel port and the TempBook's parallel port.

PC-to-TempBook Connection

1-4 Introduction and Quick Start TempBook User’s Manual

Power Connection
The TempBook is typically powered from the supplied wall-mount converter or from an optional DBK30A
battery module. The wall-mount converter plugs into any standard 110 VAC wall outlet and its other end
plugs into the circular DIN5 receptacle on the TempBook's rear panel. If using the battery module, please
refer to the section Rechargeable Battery Module in chapter 2.

TempBook Power Connection

Software Installation
The TempBook/66 comes with a Microsoft Windows application (16-bit TempView or 32-bit DaqView)
that provides the easiest means to collect data from the TempBook. To install the software (after backing
up the supplied disks), insert disk 1 for either 16-bit or 32-bit PCs into your floppy disk drive, usually A or
B. Choose RUN from the Windows Program Manager FILE menu (or Start/Run in Win95/NT) and type in
A(or B):\SETUP.EXE. Follow the on-screen prompts. If you do not plan on writing programs to
control the TempBook, you should only select the options for Temp/DaqView, DaqTest, and TempCal and
not the options for the language-support drivers. For more details, see Software Installation in chapter 2.

Using TempView or DaqView
Note: TempView and DaqView perform the same basic functions, but DaqView has more power and
convenience features.

Once the setup program has installed the software, a TempBook program group will appear within
Windows. To start Temp/DaqView, click on its program icon. The main window will soon display giving
you a spreadsheet of channels in rows and channel parameters in columns.

To begin acquiring data, you should first select the signal reference for all channels by clicking the
appropriate selection within the Signal Reference box. If you have connected thermocouples or differential
voltage signals, then select differential, otherwise select single-ended.

Turn on only those channels which have signals connected by selecting YES or NO within the left-most
column of the Analog Input spreadsheet. Then select the appropriate thermocouple type or voltage gain
setting for each channel within the Type column. The spreadsheet entries for all channels can be changed
by clicking once on the column label at the top of the spreadsheet to highlight the column and then making
the entry within the analog input box. Next choose the desired polarity, unipolar or bipolar, for each
channel in the Polarity column. Finally, choose the desired units for each channel within the Units column.

Now you are ready to read data from the TempBook. To immediately see the signal values present select
Enable Input Reading Column from within the Acquisition menu. If thermocouple or low frequency voltage
signals are being read, then more accurate and stable readings can be achieved by selecting Averaging from
the Signal Conditioning box. When selected, the values displayed will be the average of 100 readings.

The channel readings can also be viewed in a moving graph called Charts or for post-acquisition in
PostView. For more details on these topics and use of the digital I/O and counter/timer, see the appropriate
chapter in this manual, chapter 3 Using TempView (16-bit) or chapter 4 Using DaqView (32-bit).

Installation, Configuration, and Calibration 2

TempBook User’s Manual Installation, Configuration, and Calibration 2-1

Inspection
The TempBook components were carefully inspected prior to shipment. When you receive your data
acquisition system, carefully unpack all items from the shipping carton and check for any obvious signs of
physical damage which may have occurred during shipment. Immediately report any damage to the
shipping agent. Retain all shipping materials in case you must return the unit to the factory.

Every TempBook is shipped with the following items:
• TempBook Data Acquisition System
• User's Manual
• Software Disk (2) in IBM Format including DaqView, DOS Drivers and Windows Drivers
• Accessory Kit, including: CA-35-2 (2 ft parallel port cable) and an AC Adapter

Panel Connectors and Indicators
The TempBook front panel consists of 3 status-indicator LEDs. The rear panel consists of the power
switch, power input, two DB25s for parallel port connection and pass-thru, and a slot to accept the input
termination card. The function of each of these components is described below.

TempBook Panel Connectors and Indicators
POWER SWITCH This rocker arm switch turns on the DC power to the TempBook when the "1" side

of the switch is depressed.
POWER INPUT This input connector accepts +7 VDC to +20 VDC.
TO PARALLEL PRINTER This parallel port can connect to any standard parallel printer. This allows the

user to attach both the TempBook and a parallel printer to the system
simultaneously.

FROM PC PARALLEL PORT This parallel port connects directly to the PC's parallel printer port. This allows
the host system to communicate with the TempBook.

POWER This LED is ON when power is applied to the TempBook (and the power switch is
in the ON position). OFF, if power is not present.

ON-LINE This LED is ON when the TempBook is in an Active state. OFF, when the
TempBook is not enabled or in the printer pass through mode.

A/D ACTIVE ON during an A/D scan sequence. If the sequence has a small number of steps
and occurs infrequently, this indicator will only flash briefly.

TempBook Front and Rear Panels

2-2 Installation, Configuration, and Calibration TempBook User’s Manual

Termination Card and I/O Connectors
The TempBook/66 accepts all analog and digital I/O signals via a removable termination card (see figure).
This termination card has six screw terminal strips, a CJC temperature sensor, and input R/C filters which
also provide a bias current return path for the TempBook's instrumentation amplifier. The filters/bias
resistors are switch-selectable on a per channel basis.

TempBook Termination Card

Terminal strips J2 and J3 provide analog input signal connection. Note that the terminals are arranged in
differential pairs for easy thermocouple connection. These terminal strips also provide analog signal
common connections for convenient referencing of single-ended input signals.

Terminal strips J4 and J5 provide connections for the eight digital outputs and the TTL trigger input. These
terminal strips also provide ground connections for referencing digital signals. Terminal strips J6 and J7
provide connections for the eight digital inputs, the pacer clock output (OUT2), and the three counter/timer
(8254 P0) I/O signals.

The thermocouple or voltage connections should be made as shown in the following figure.

Analog Signal Connection

Note: When connecting thermocouple and other low-level signals in addition to high-level signals, the low-
level signals should be connected to the lowest numbered channels with connections following in ascending
order of signal magnitude.

TempBook User’s Manual Installation, Configuration, and Calibration 2-3

Each of the 16 analog input channels is configured as shown in the figure (also, refer to the appendix for
more information on wiring differential inputs).

The series resistance and shunt capacitance form a single-pole
low-pass filter with a corner frequency of 15.9 kHz. The shunt
resistance provides the bias current path for the instrumentation
amplifier.

When reading thermocouples, these filters should be switched in.
If the filters are not used with thermocouples or any other
differential input, then the user must provide a bias current return
path to signal common. Note that for each differential
channel, two DIP switches need to be set.

Internal Configuration
To open the unit, place the TempBook on a flat surface. Remove
the screw on the top rear of the case, and slide out the top cover.
Reverse this procedure to assemble the unit.

The internal configuration of a TempBook/66 consists of setting
the following jumpers to reflect the desired mode of operation:

• Time Base (JP9)
• Watchdog Timer Enable (JP8)

The location of each jumper is shown in the figure.

Watchdog Timer Enable/Disable (JP8)
This 3-pin header allows the elective use of the TempBook watchdog timer
function. If using a printer with the TempBook, the watchdog timer should be
enabled to allow the TempBook to be most reliably reset by the host computer.
Note that enabling the watchdog timer might impede background
measurements. If the user is not going to attach a printer, the timer is optional.
The default setting is Watchdog Timer Disabled. To enable, place the shunt
jumper in the enabled position as shown in the figure. To disable, place the
jumper in the disabled position, as shown.

Time Base Selection (JP9)
This 2×2 header allows the user to select one of two oscillator derived
frequencies to be applied to the pacer clock (8254 P1 & P2). The pacer clock
sets the interval between scans in continuous trigger mode. The two frequencies
are 1 MHz and 100 kHz. The most useful range of clock output frequencies for
the average user would be provided by the 1 MHz setting (the default setting).

Hardware Installation
Connect the TempBook to any PC parallel printer port (female DB25) by unplugging the printer cable and
plugging the male end of the supplied cable (CA-35) into the computer and the female end into the mating
connector on the TempBook. Any printer port (LPT1, LPT2, or LPT3) may be used but should be noted
for use in software installation.

TempBook allows for LPT pass-through for simultaneous data acquisition and printer operation. When
using a printer in the system, attach the original printer cable male DB25 into the mating connector on the
TempBook.

The TempBook may be powered by the supplied AC adapter that plugs into any standard wall outlet or
from an isolated 7-20 VDC source of 1-2 A.

If using the power adapter, plug it into a 120 VAC outlet, and attach the low voltage end to the jack on the
TempBook. Turn ON the power switch, and the POWER LED should be on.

2-4 Installation, Configuration, and Calibration TempBook User’s Manual

At power-on, the printer should behave normally and can be checked by issuing a PRINT SCREEN
command (or any other convenient method of checking the printer). (Installation of the software will be
necessary before the TempBook can perform any functions.)

Rechargeable Battery Module (DBK30A)
For portable applications where external AC or DC power is not available, the DBK30A rechargeable
nickel cadmium battery module can be used with the TempBook/66. This module is housed in a rugged
metal package that is the same size as the TempBook. It also comes with high-strength Velcro tabs that
allow convenient mounting underneath the TempBook/66.

The DBK30A is a revised combination of the DBK30 and DBK31 battery modules. There is an internal
slide switch which determines whether a DBK30A will act as a DBK30 or DBK31.

Note: Only the DBK30 mode should be used with the TempBook/66.

The DBK30 operating mode provides 14.4 VDC at 3.4 A-Hr. This setup can power the TempBook for 3 to
6 hours depending on the application. The battery module has built-in automatic battery-charging circuits,
which quickly and safely recharge the internal batteries when connected to the supplied AC adapters. The
only requirement for trouble-free operation is for the user to fully charge the battery module before
attempting to use it.

Charging the Battery Modules
The DBK30A package includes a charger for the intended line voltage (either 120 VAC or 230 VAC). To
charge the battery module, plug the output cable from the charger into the POWER IN connector on the
DBK30A, and plug the charger into an appropriate source of AC power (see figure). The charge cycle will
be initiated automatically, and the batteries will be fully charged after the charging cycle terminates.

Connecting the Charger

To initiate another charge cycle, depress the START CHARGE momentary rocker-arm switch. Subsequent
charge cycles applied to a fully charged DBK30A will have no ill effect because the DBK30A will sense
the fully-charged status of the batteries and revert to the trickle-charge state within a few minutes.

There 3 LED status indicators on the DBK30A provide information on the charge process or external load
as noted in the table.

Power In Illuminated when the charger is connected to a source of AC power and to the battery
module.

Battery Charging Illuminated steadily while battery is in the high current (2-amp) charge mode.
Flashing briefly, one or two flashes at a time, when the internal batteries are fully charged.

Power Out Illuminated steadily when an external TempBook product is connected and drawing current
from the battery modules.

TempBook User’s Manual Installation, Configuration, and Calibration 2-5

Battery Module Connection
The DBK30A package includes a short connecting cable (CA-115) to connect to the TempBook. This
cable connects the Power Out connector on the DBK30A to the Power In connector on the TempBook (see
figure).

Connecting the TempBook to the Battery Module

The run time available from a DBK30A operating a TempBook will depend on what the TempBook is
doing. This time can be as little as 3 hours or as much as 6 hours.

CAUTIONCAUTION
The DBK30A must periodically be fully discharged or the cells may develop "lazy
chemistry" that may limit storage capacity. (This “memory” is characteristic for
nickel-cadmium batteries.) To manually discharge a battery pack, connect a
TempBook, and leave it turned on until the indicator lights go dark.

Parallel Port Capabilities
The TempBook includes a test program which verifies your computer's parallel port, testing its standard and
enhanced capabilities.

• Standard LPT ports on an IBM compatible computer have two modes to read data from the printer
port: 4-bit and 8-bit. The 8-bit mode is somewhat faster than the 4-bit, but not all printer ports support
this mode.

• Enhanced parallel ports (EPP) are parallel ports which include additional hardware that allows the
TempBook to communicate with the PC at 3 to 10 times the speed possible with standard parallel
ports. This greatly improves data acquisition performance.

Enhanced parallel ports require special hardware, and only certain computers are EPP capable. Most laptop
computers that use the Intel 386SL or 486SL chip set (which includes the 82360 I/O Controller) are EPP
capable. For those computers which have plug-in card slots, EPP adapter cards are available. You may
wish to contact your computer's manufacturer for details about your machine and possible adapter cards.

The TempBook test program, TEMPTEST.EXE (described in a later section) should be run to determine
the PC's printer port capabilities.

Note: To take advantage of the improved performance of EPP when using a programming language, you
must add the software command tbkSetProtocol (standard API) to your program. For details, refer to
the command description in the Command Reference section of this manual.

2-6 Installation, Configuration, and Calibration TempBook User’s Manual

TempBook Software Installation
The TempBook/66 software installation consists of two steps: making a backup copy and installing the user-
selected files. The software can be installed under DOS, Windows 3.1, or Windows 95/NT. A description
of each method follows. Note: any previous installation of the TempBook drivers should be removed
before installing a new version.

Making a Backup Copy
Before attempting to load the software, make a backup copy of the release disks according to directions for
your operating system. Store the original disks in a safe place, and use the copies for software installation.

DOS Installation
1. Move to the A drive by typing A: at the DOS prompt.
2. Type: INSTALL to run the install script which describes how to install the software onto a hard disk.

The script also allows the user to select which DOS support files are to be installed. The destination
disk and path must be specified. For example, to install the software into the \TempBook directory of
the C drive, type the command INSTALL C:\TEMPBOOK at the DOS prompt. If the installation
file is run with no parameters, it will print a help message on screen.

Installation Under Windows 3.1
The TempBook Windows Install program copies the user-selected files and creates a Windows
program group and icons.

1. After exiting other programs, begin
installation by putting disk #1 of the
Windows 3.1 set into your floppy disk
drive. From the program manager
choose File/Run to run the
SETUP.EXE file.

2. The Windows Setup dialog box asks
you for a destination directory.

3. From the next dialog box, select the
Typical, Compact, or Custom/Full
installation (see figure). After the
options have been selected, the bottom
of the screen will display the amount of
hard disk space required for the
installation and the amount of disk space
remaining after installation. Make sure
there is room available for installation
before continuing.

4. After installing the files from disk #1,
the program will prompt you to place
the rest of the installation disk set into
the floppy drive. As an option, DOS
drivers may also be installed. A final
message will display when installation is
complete.

Note: To verify proper performance, TempTest (described in the next section) should be run after
installation under Windows 3.1 (installation under Windows 95/NT has its own hardware test).

TempBook User’s Manual Installation, Configuration, and Calibration 2-7

Running TempTest
Once the software is installed, the TempBook test program (TEMPTEST.EXE) should be run. TempTest
verifies the PC's printer port capabilities (standard and enhanced) and estimates the port's maximum
performance. To run the TempBook test program, type TEMPTEST at the DOS prompt.

For proper Enhanced Parallel Port (EPP) operation, both TEMPTEST and the TempBook driver must be
informed of the specific EPP implementation available on your computer. If you select Y to test for EPP
operation, TEMPTEST provides a selection of known EPP computers and interfaces and allows you to
choose which one to test.

When TempTest is complete, a test summary will display. It verifies the following:

IOAddress The I/O base address of the LPT port. All available ports are automatically detected by
TempTest.

EPP Type If "Yes" was selected to test EPP, this field will display the type of EPP implementation
used.

TempBook Detected "Yes" if a TempBook was detected on the port under test. If "No," the following tests
are not run.

Reliable Operation "Yes" if all communication tests with the TempBook pass.
Output Speed An estimated rate at which data can be sent out to the TempBook.
EPP Input Speed An estimated rate at which data can be read from the TempBook in EPP mode. Note

that this will vary depending on the manufacturer of the printer port.
8-bit Input Speed An estimated rate at which data can be read from the TempBook in 8-bit mode.
4-bit Input Speed An estimated rate at which data can be read from the TempBook in 4-bit mode.

The driver software is then configured for EPP with the tbkSetProtocol software command which is
described in the Command Reference Chapter. If TEMPTEST is unable to identify a reliable method of
communication, contact the factory.

Installation Under Windows 95 and Windows NT
This section describes the installation of TempBook software under the Windows 95 and Windows NT
operating systems. Installation for both Windows 95 and Windows NT are operationally equivalent. In
fact, they use the same installation disk set. The installation program automatically detects which operating
system is running and then proceeds accordingly.

Two preliminary steps are to:
• Locate the disk set labeled TempBook Software for Windows95/NT and make a backup copy of the

disk set before proceeding.
• (If the TempBook is to be used immediately) Attach the TempBook to the desired LPT port and

power-on the system before starting the software installation.

Now insert the diskette labeled Disk 1 of the Windows 95/NT set into the floppy drive. Locate the drive
and double-click on the file Setup.Exe. The installation process begins and displays a Welcome screen
with copyright and other information regarding the product. Click Next> to continue with the installation.
Click Cancel to exit without installing the software. Note: If other Windows programs are running, select
Cancel, exit all other programs, and return to TempBook installation when ready.

The next screens allows you to specify the program folder in which to install the software and then various
options of program components. Use your mouse to click your selections, and follow on-screen
instructions.

2-8 Installation, Configuration, and Calibration TempBook User’s Manual

The next screen shows the progress of the installation of the software components. As the installation
progresses, you may be asked to periodically insert the next disk into the floppy drive. When prompted,
replace the current disk with the next disk. When the software component installation is complete, you are
given 3 options:

• Exit and perform device configuration (If the TempBook is to be used immediately, you should select
this configuration option and proceed to the next section).

• Exit and review the readme file for up-to-date information on the current release version.
• Exit completely and return to your operating system.

TempBook Configuration Under Windows 95/NT
This section describes the configuration of TempBook devices under the Windows 95 and Windows NT
operating systems. A configuration utility is supplied via a control panel applet. The Daq Configuration
applet allows you to add a device, remove a device, or change existing configuration settings. Daq
Configuration also has a built-in test utility to test the device. The test utility provides feedback on the
validity of the current configuration settings as well as providing relevant performance summaries.

Daq Configuration can be found in the Windows 95/NT
control panel and can be executed any time that it is desirable
to add, remove or change device configuration settings. Daq
Configuration may also be entered during driver installation.
The following description applies to either method.

The Daq Configuration/Device Inventory screen at right will
display all currently configured devices. Displayed devices are
indicated by their name and an identifying icon which indicates
the device type. If no devices are currently configured, no
devices will appear in this field.

The 4 buttons across the bottom of the Daq Configuration
screen are used as follows:

• Properties. Current configuration settings for a device
can be changed by bringing up the corresponding
properties screen. To do so, double-click the device icon
or single-click the device and then double-click the
Properties button.

• Remove. The Remove button is used to remove a device from the configuration. A device may be
removed if it is no longer installed or if the device’s configuration no longer applies. Note: if a device
is removed, applications may no longer access the device. However, the device can be re-configured
at any time using the Add Device function described below.

• Close. The Close button may be used at any time to exit the Daq Configuration applet.
• Add. The Add Device button is used to add a device

configuration whenever a new device is added to the
system. Failure to perform this step will prevent
applications from properly accessing the device. Double-
clicking the Add Device button will display a window as
shown in the figure.

Use the scroll bar to find the TempBook device type to be
configured. Once found, click the device type (the type should
then appear in the main edit box). Now double-click the OK
button.

The next screen displays the properties for the TempBook
device with the default configuration settings. Fields include:

• The Device Name field is displayed with the default
device name. However, this field can be changed to any
descriptive name as desired. This device name is the name to be used with the daqOpen function
(see enhanced API chapter) to open the device.

• The Device Type field should indicate the device type which was initially selected. However, it can
be changed here if necessary.

TempBook User’s Manual Installation, Configuration, and Calibration 2-9

• The Protocol field is used to set the parallel port protocol for communicating with the TempBook.
Depending on your system, not all protocols may be available.

Note: IRQ Setting and DMA Setting for the TempBook are currently not configurable. These fields are
reserved for future use.

When all fields have been changed to the desired settings,
you can click:

• the Apply button to store the configuration.
• the OK button to store the configuration and exit the

current property screen.
• the Cancel button to exit the current device

configuration property screen without storing any
changes.

• the Test Hardware tab to test the current stored
configuration for the device. This selection will bring
up the Test property screen. Note: the next figure
displays results from a previously run test. Initially, the
screen will show no test results.

Before testing the TempBook, make sure the device has been
properly installed and powered-on. Make sure the parallel
port cable is firmly in place on both the TempBook and the
proper LPT port in the computer. Note: Testing the
TempBook device may, in some cases, cause the system to hang. If test results are not displayed in 30
seconds or the system does not seem to be responding, reboot the system. Upon power-up, re-enter the Daq
Configuration and change the configuration settings to those that work properly. To test the current stored
configuration for the device, click the Test button. Test results should be displayed within a few seconds.
The test results have 2 components: Resource Tests and Performance Tests.

Resource Tests
The resource tests are intended to test system capability for the current device configuration. These tests
are pass/fail. Resource test failure may indicate a lack of availability of the resource or a possible resource
conflict.

• Base Address Test - This test will test the base address for the selected parallel port. Failure of this
test may indicate that the parallel port is not properly configured within the system. See relevant
operating system and computer manufacturer’s documentation to correct the problem.

Performance Tests
The performance tests are intended to test various TempBook
functions with the current device configuration. These tests
give quantitative results for each supported functional group.
The results represent maximum rates at which the various
operations can be performed. These rates depend on the
selected parallel port protocol and will vary according to port
hardware capabilities.

• ADC FIFO Input Speed - This test will test the
maximum rate at which data can be transferred from the
TempBook’s internal ADC FIFO to computer memory
through the parallel port. Results are given in
samples/second (sample is 2 bytes in length
representing a single A/D count).

2-10 Installation, Configuration, and Calibration TempBook User’s Manual

Connection Troubleshooting (Windows 95/NT)
If communications cannot be established with the TempBook or if trying to connect causes the system to
hang or crash, then you should:

• Check that TempBook’s power LED is ON. If not ON, verify power connection between the
TempBook and the power source.

• Make sure the LPT cable is firmly attached to the computer’s proper LPT port and to the TempBook
port labeled “TO COMPUTER”.

• Check that the desired LPT port has the proper resource configurations. The base address and IRQ
level must be properly configured and recognized by the operating system. The parallel port must be
capable of generating interrupts for proper operation. (This information may be obtained in the
Device Manager in the Control Panel of the operating system). More information on this subject can
be found in the readmew.txt file in the current software release.

• Check the BIOS settings for the LPT port. Make sure the BIOS LPT protocol settings are compatible
with the settings selected for the LPT port with the Control Panel applet.

• Make sure the Daq Configuration Applet has been run and the proper LPT port and protocol have
been selected for the device. The Daq Configuration applet can be found in the Control Panel of the
operating system. The Test Hardware function in the control panel applet can be used to confirm
proper communication with the device.

• WINDOWS NT: Make sure the driver has been loaded. The installation will configure the operating
system to automatically load the driver at bootup. However, if there is a problem communicating with
the device, the driver can be loaded manually by using the following start sequence from a DOS shell:
NET START TEMPBK. To unload the driver manually, use the following sequence: NET STOP
TEMPBK.

TempBook User’s Manual Installation, Configuration, and Calibration 2-11

Calibration of TempBook
The TempBook/66 is factory calibrated for gain and offset. After calibration, the unit is characterized for
gain and offset errors, and software correction constants are calculated. For users who wish to use these
constants within their own programs, see the Software Calibration and Zero Compensation chapter. For
users who wish to use these constants within DaqView, follow the next section.

Calibration Constants File Installation
Each TempBook is shipped with a disk containing a calibration constants text file. The file is named
serial_no.cal where serial_no is the serial number of the TempBook for which the constants were generated.

The default calibration constants filename assumed by TempView is tempbook.cal. If you want to use
DaqView with software calibration, then the file serial_no.cal must be renamed tempbook.cal and placed in
the DaqView working directory, usually C:\TEMPBOOK\WIN\UTILS.

The following command can be used to copy and rename the file if executed from the floppy disk drive.

COPY SERIAL_NO.CAL C:\TEMPBOOK\WIN\UTILS\TEMPBOOK.CAL

Hardware Calibration
Since the TempBook is factory characterized after calibration, user recalibration is not recommended.
However, one exception to this recommendation is the calibration of the TempBook's internal 5V reference.
This 5V reference is used to level-shift the amplified analog input signal for unipolar measurements.
Reference-voltage drift is not compensated for with zero compensation; and therefore, periodic
recalibration can improve unipolar measurement accuracy.

The following characteristics can be calibrated through potentiometer adjustments on the TempBook main
board:

• 5V Reference Voltage
• Instrumentation Amplifier Offset
• Level Shift Amplifier Offset
• ADC Offset
• ADC Span

The TempBook includes a simple calibration program which can be used to perform these adjustments. If
the user is only performing the reference voltage adjustment, then only a 4-1/2 digit DMM is required. If
the user is performing the full TempBook calibration, then an adjustable voltage calibrator is also required.

A Microsoft Windows program, TEMPCAL.EXE, is provided to perform calibration of the TempBook. To
use this program, install the TempBook Windows support and launch the TEMPCAL program; follow the
on-screen instructions.

2-12 Installation, Configuration, and Calibration TempBook User’s Manual

- Notes

Using TempView (16-bit) 3

TempBook User’s Manual Using TempView (16-bit) 3-1

TempView is a graphical Microsoft Windows application for operating the TempBook hardware with a 16-
bit PC. No programming knowledge is required to operate this application. TempView allows you to set
up an application to acquire data and save it directly to disk with the ability to transmit the data to other
Windows applications, such as spreadsheets and databases. TempView provides the following capabilities:

• Set up all of the analog input parameters, then acquire and save the data to a disk file.
• Exercise TempBook’s digital I/O section.
• Exercise the counter/timer.
• Launch PostView, an independent application to graphically view waveforms previously recorded by

TempView.

Application Startup
If you have not already installed TempView, refer to chapter 2 of this manual. To launch the application,
double-click the TempView icon. TempView holds many user-configured parameters which can be saved
to disk. The default configuration file name is “TEMPVIEW.CFG”. TempView will then proceed to
search the working directory for the TEMPVIEW.CFG configuration file. The following conditions may
apply:

• If the default configuration file is found, all the required setup information will be extracted from it,
and the application's main window will open.

• If the default configuration file is not found, TempView will try to connect with the TempBook
hardware with the following default parameters: Printer Port LPT1, Interrupt Level 7, and 4-bit
Standard Protocol.

• If connection with the TempBook is established, the applications main window will open with default
setup.

• If all of the above fails to establish communications with the TempBook, then a dialog box will appear
asking whether or not you want to open a different setup file. Answering “Yes” will open another
dialog box where you can select your file. If this is the first time you have used this application, no
saved setups will be available; select “No”.

• If a configuration file is selected, no further dialog boxes will appear, all the required setup
information will be extracted from it, and the applications main window will open.

• If no user configuration file is selected or found, or communications is not established, the next dialog
prompts the user to choose a real instrument or a simulated instrument. If the hardware is not
available and you just want to try out the software, select Simulated Instrument. The Simulated
Instrument mode allows you to exercise all the software functions without any hardware installed. If
the TempBook hardware is connected and switched on, select Real Instrument.

• If Real Instrument was selected, an additional dialog box will appear, prompting you to select the LPT
port that the hardware is connected to, the interrupt level of that port, and the parallel port protocol to
use.

TempView will attempt to find the TempBook on the specified LPT port. If the hardware is found, the
application's main window will open. If no hardware is found, a message appears and the application will
open with the controls disabled.

To reconfigure the LPT port setting and try again, click Select LPT Port under the Select Port menu. If the
TempBook hardware still cannot be identified by the software, exit TempView and try the TEMPTEST
utility program.

3-2 Using TempView (16-bit) TempBook User’s Manual

TempView Components
The figure shows TempView’s main window that has areas for the following:

• Analog input spreadsheet to summarize system configuration and show current readings
• Trigger configuration, event type and edge
• Sequence repetition rate, number of scans, and averaging enable
• Data destination (filename and data format)
• High-speed digital input enable
• Signal reference type

TempView’s Main Window

Analog Input Spreadsheet
The input spreadsheet allows the analog input channels to be configured and displayed. The spreadsheet
consists of rows and columns much like a standard accounting spreadsheet.

• Each row configures a single analog input channel. There are 16 rows if single-ended inputs are
selected; or 8 rows if differential inputs are selected.

• The columns contain the configuration information for each channel. Some columns allow blocks of
cells to be altered simultaneously while others allow only one cell to be changed at a time. Clicking a
column header will select the entire column if possible.

The 7 columns for each row are used as follows:

CH - The channel-number column labeled "CH" is static and cannot be altered. This column identifies
rows by the corresponding analog input channel to configure.

ON - The column labeled "On" allows you to select whether or not data will be collected from the
corresponding input during an acquisition. An acquisition consists of reading data to disk, either to charts
or the input reading column of this spreadsheet. When a cell or block of cells in this column is selected, a
selection box will appear above the spreadsheet that allows a "Yes" or "No" choice to enable or disable the
channel. Double-clicking a cell in this column will toggle the channel status. The Make All Channels
Active and Make All Channels Inactive menu items under the Edit menu can be used to globally change all
channels to a "Yes" or "No".

Type - The "Type" column allows you to set the thermocouple or gain type for the selected channel or
block of channels. Double-clicking a cell or block of cells in this column will select the next available gain
or type.

TempBook User’s Manual Using TempView (16-bit) 3-3

Pole - The "Pole" column shows the state of the channel polarity which can be either unipolar or bipolar.
The channel polarity can be programmed on a per channel basis. If a cell or block of cells in this column is
selected, a selection box will be displayed above the spreadsheet with the selections "Uni" and "Bi" when
the cell is selected. Double-clicking in one of these cells will toggle the polarity.

Label - The "Label" column contains a descriptive name for the input channel. By default it contains a
label similar to its channel number; however, you can enter a more relevant, descriptive label of 8
characters. This label will be used when selecting a specific channel in the analog trigger and chart
selection lists. This column does not have a selection list above the spreadsheet and does not allow
selecting blocks of cells.

Units - The "Units" column allows you to change the
engineering units of each channel and apply a linear equation to
the data read from the TempBook. When a cell or block of cells
in this column is selected, a selection box is displayed
containing mX+b as well as common engineering units (see
figure). Selecting mX+b will pop up a window that allows the
m and b of this equation and the engineering units label to be
defined. The engineering units will then be displayed in the
"Units" column, and the mX+b equation will be applied to the
reading from the TempBook before the reading is displayed or
written to disk. The X in this equation is the voltage or the degrees in Celsius read back from the
TempBook. For example, if a TempBook channel is configured as bipolar and unity (×1) gain, the default
voltage would be ±5 V. This corresponds to an m of 1, a b of 0 and an engineering unit of V. This could be
changed to millivolts by setting m to 1000 and units to mV. This column could also be used to perform a
software calibration of the TempBook. This is performed by reading known inputs at two different points
of the input voltage range (usually at 0 and full scale) and solving the equation y = mX+b. The full-scale
voltage, which changes according to the gain of the channel, is 5V/gain for bipolar channels and 10V/gain
for unipolar channels.

Reading - The "Reading" column can display the analog input readings of the TempBook. This column
cannot be altered by the user and is enabled by selecting Enable Input Reading Column under the
Acquisition menu. This column will update the readings as fast as the computer will allow. If data is being
written to disk while this column is enabled, it will be updated whenever possible. The spreadsheet cannot
be altered while the input reading column is enabled.

In addition to the analog inputs, there is one 8-bit digital input channel accessible on the termination card.
This high-speed digital input, which is read at the same rate as any analog inputs, can be enabled or disabled
by clicking the "ChanOn" checkbox in the lower right of the analog input spreadsheet.

Acquisition Configuration
The acquisition configuration section of TempView’s main window is just to the right of the analog input
spreadsheet. This section has 5 parts: the Trigger, Scan Frequency, Number of Scans, Signal Conditioning,
and Data Destination sections. These sections allow you to set up all of the acquisition parameters for the
analog inputs and the high-speed digital input channel. The analog acquisition configuration includes
parameters for setting up a trigger source, the scanning frequency after the trigger is satisfied, the number of
scans to take after the trigger, and the file name for the collected data. These settings will be used when an
acquisition-to-disk is started by selecting "Go" under the acquisition menu.

Trigger - The Trigger section selects the source of the trigger. When the trigger is satisfied, the scans are
collected at the selected scan frequency and stored to disk. The sources are: Key Hit, which arms the
acquisition and waits for the user to hit a key; and External TTL, which waits for a falling or rising edge on
the 'trig' input terminal on the termination card.

Sequence Rep Rate - The scan frequency can be set in units of seconds, minutes and hours. Moving the
slide switch changes the rate. The cursor can also be placed in the numeric field and a number can be
entered directly. The maximum scan frequency is dependent on the number of channels that are enabled
and whether or not averaging is enabled. Enabling more channels or enabling averaging will lower the
maximum scan frequency.

Signal Cond Averaging - The Averaging checkbox enables or disables averaging of the analog input data.
Averaging can be used to increase the effective accuracy of a noisy signal. Averaging will increase the

3-4 Using TempView (16-bit) TempBook User’s Manual

actual scan frequency and number of scans, but the perceived scan frequency and number of scans (which is
set by TempView) does not change.

No. of Scans - The number of scans can range from 1 to 100,000. A scan includes all of the channels that
are marked as "On" in the analog input configuration spreadsheet.

Data Destination - This section contains the file name and type of file(s) that exist after an acquisition-to-
disk is complete. A file name can be typed in directly or the Browse Files button can be pressed to open a
file-selection dialog box. The selected file will be placed directly into the filename field. During an
acquisition, a raw binary file is created and updated as data is read. After the acquisition is complete, an
ASCII text file and PostView binary file can be created if the appropriate checkbox is enabled. Both of
these files can be read by PostView (described later in this chapter). If the raw binary checkbox is not
enabled, the raw binary file will be deleted after creating the PostView or ASCII file.

After the acquisition is started, these parameters can not be altered.

Counter/Timer Window
The counter/timer window is displayed when ctr/tmr is selected under the Windows pull-down menu. This
window allows configuration of the 8254's counter 0. Counter 0 is configured by selecting its function,
clock source and initial count. When the Start Timer button is clicked, the counter configuration will take
place.

Counter/Timer Window

Digital I/O Window
The digital I/O window is displayed when digital I/O is selected
under the windows menu. This window provides interactive control
of the 8 digital input lines and 8 digital output lines on the
TempBook termination card. Select output values by clicking on the
output witches which toggle between 0 and 1—or you can enter the
hex value and <Enter>; the switch positions will update to reflect the
new setting. When the Execute button is pressed, all output lines
will be updated and all input lines will be read.

Charts and the Spreadsheet's "Reading" Column
Up to 4 charts can be displayed by selecting charts under the Window menu. Before the charts can be
enabled, at least one chart must be assigned a channel through the channel’s drop-down list. When a
channel is selected, you can change the minimum and maximum values displayed in the chart (see figure).
This can be done whether or not the charts are currently enabled.

The charts and the spreadsheet Readings column are independently enabled. The charts can be enabled
under the Charts menu of the Charts window. The Readings column can be enabled under the Acquisition
menu of the main TempView window. These windows provide instant feedback of the analog input
readings.

Data is read and displayed in the charts and Readings column as fast as the computer will allow. When an
acquisition to disk has begun using the Go command under the Acquisition menu, the charts and the
spreadsheet Reading column take a lower priority, updating only when there is sufficient time in the
acquisition-to-disk task. Therefore, the data seen in the charts may not be an accurate reflection of the data

TempBook User’s Manual Using TempView (16-bit) 3-5

that is being placed on the disk. As the scan rate is increased, the acquisition-to-disk task will take up more
processor time and the charts will be unable to keep up.

TempView Display Charts

TempView Menu Items

File
The file menu provides four basic functions:

New Set all parameters to their startup setting.
Save Save the existing configuration for later recall.
Load Load a saved configuration.
Convert Binary to ASCII Convert a previously acquired binary file to an ASCII file that can be read by

spreadsheets or other analysis programs.
Convert Binary to PostView Binary Convert a previously acquired binary file to a binary file that can be read by

the PostView application.
Exit Leave the TempView program.

Edit
The Edit menu includes the following functions:

Make All Channels Inactive This command places a "No" in the On field of all of the channels. If your channel
scan includes only a few channels, it may be easier to make all of the channels
inactive, then turn on only those few channels that you want.

Make All Channels Active This command places a "Yes" in the On field of all of the channels.
Fill Down When multiple cells within a column are selected, this command takes the top-

most selected cell and copies its contents in the selected cells below.

3-6 Using TempView (16-bit) TempBook User’s Manual

Select Device
The Select Device menu includes the following functions:

Select LPT Port Brings up a dialog box prompting the user to select the LPT port on which the TempBook is
connected. After an LPT port is selected, TempView opens a new session with the
TempBook hardware and attempts to communicate with it. If the hardware is found, the
main window is opened. If no hardware is found, the user is alerted and the application is
opened with the controls disabled. To reconfigure the LPT port setting and try again, click
Select LPT Port under the Select Port menu. If the TempBook hardware still can not be
identified by the software, exit TempView and try the TEMPTEST utility program.

Simulated Device This command opens a TempView session but does not attempt to communicate with
TempBook hardware. Instead, the application simulates the interaction between the
software and the hardware. If TempView is presently attached to real TempBook
hardware, this command will close that session.

Window
The Window menu includes the following functions:

PostView This command launches an instance of the PostView application.
Charts This command displays the charts window.
Analog Output This command displays the analog output window.
Digital I/O This command displays the digital I/O window.
Ctr/Tmr This command displays the counter/timer window.

Acquisition
The Acquisition menu includes the following functions:

Go This command arms the hardware for an acquisition to disk. When the trigger is satisfied,
the acquisition begins. All of the interactive I/O controls are disabled while the system is
armed. No acquisition parameters can be altered at this time.

Enable Input
Reading Column

This command reads the analog inputs and puts the numeric values in the spreadsheet in
the "Reading" column. If it is already enabled, this command disables it.

Charts
The Charts menu of the charts window includes the following function:

Enable Charts This command starts the scroll chart running. If the chart is already running, this command
stops it.

Using PostView
PostView is an independent application that allows the user to graphically view the waveforms recorded by
TempView. As the data file is being created by the acquisition application, a descriptor file used by
PostView is also created. PostView can be launched independently or launched from TempView's Window
menu. Multiple sessions of PostView can be invoked concurrently to view multiple data files.

To view a data file from within PostView, select Open under the File menu. A File Open dialog box
provides a means of selecting a TempView data file. To place channel waveforms into the window, select
the number of charts from 1 to 16 under the Number of Charts menu item. Selecting N number of charts
will automatically place the first N channels in the charts. Use the Channel Select List Box next to the chart
to associate a different channel with the chart.

When PostView is launched from TempView, it automatically opens the file selected as the destination file
in those applications. To view other files, use Open under the File menu.

Zoom In - The Zoom In button halves the visible timebase, showing less of the waveform. For example, if
10 seconds of information is visible, clicking the Zoom In button will show 5 seconds.

Zoom Out - The Zoom Out button doubles the visible timebase, showing more of the waveform. For
example, if 10 seconds of information is visible, clicking the Zoom Out button will show 20 seconds.

TempBook User’s Manual Using TempView (16-bit) 3-7

PostView Charts and Scroll Bar Functions

Scroll Bar - The Scroll Bar allows the waveforms to be scrolled right or left. The Scroll Bar has 5 active
areas for scrolling the waveforms, as shown in the figure below. The Small Left and Small Right scroll the
waveforms left and right approximately 20%. The Large Left and Large Right scroll the waveforms left and
right approximately 80%. The Scroll button shows the relative location of the visible region of the
waveforms and can be dragged along the scroll bar to any location desired.

Y-Axis Adjust - The Y-Axis Adjust fields show the chart's minimum and maximum for every visible chart
in the engineering units shown. Clicking the Auto Scale button automatically adjusts the Y-Axis Adjust
fields. To adjust any chart's minimum or maximum, place the cursor in the desired Y-Axis Adjust field and
type in a new value.

Channel Select List Box - Each chart has a Channel Select List Box to allow the user to assign any of the
available channels to that chart. The Channel Select List Boxes contain labels that were assigned to the
recorded channels by TempView.

Auto Scale - Clicking the Auto Scale button adjust the Y-Axis labels so that the visible waveform fills 90%
of the chart's range.

Markers - Each chart contains a marker that shows the numerical values of time and magnitude at its
present location in the waveform. The Markers start out at the far left of every chart, showing the time and
magnitude of the first visible point. The left mouse button allows the user to drag the marker of each chart
independently. The right mouse button moves the markers from all of the charts synchronously. The
Options menu contains a function which allows markers to be turned on and off by the user. When a check
appears in front of this item, its associated indicator is on or visible. Selecting the menu item toggles the
indicator (and the check mark) on and off.

Stop Event Marker - The Stop Event Marker on the time axis shows the location of the stop point.

3-8 Using TempView (16-bit) TempBook User’s Manual

The PostView Timebase
PostView automatically detects the timebase of the data file and shows the time in the X-Axis labels in
seconds.

Timebase for TempView - All TempView files begin at the trigger point (t = 0), and the time between each
scan is constant.

PostView Menu Items

File
The file menu provides two basic functions:

Open Open a data file created by TempView. PostView automatically detects whether the file
contains ASCII or binary data.

Print Window Print the present PostView window.

Number of Charts
The number of charts menu provides one basic function:

1-16 After a data file has been opened, the number of desired charts can be selected. You can
also use this menu selection to change the number of charts displayed.

Go To
The go to menu provides four basic functions:

Trigger point Automatically scrolls the waveforms so that the trigger point (t = 0) is in view.
Scan Number Automatically scrolls the waveforms so that the desired scan number is in view. This menu

selection invokes a dialog box which displays the number of scans in the file.
Time Automatically scrolls the waveforms so that the desired time is in view.
Percentage Automatically scrolls to the desired percent of the data file. For example, selecting 50% would

display a waveform segment from the middle of the data file.

Options
The options menu provides two basic functions:

Grids (Ctrl-G) Allows grids to be turned off and on for all visible graphs. When a check appears in front of an
item, its associated indicator is on or visible.

Markers (Ctrl-K) Allows markers to be turned off and on for all visible graphs. When a check appears in front of
an item, its associated indicator is on or visible.

Help
The help menu provides three basic functions:

Contents The initial PostView help screen provides an overview and listing of the help file contents. A
single topic can be selected for quick access to help information.

Search Type a word or select one from the Show Topics list for quick access to help information.
How to Use Help Provides instructions on how to use a Windows Help system.

Using DaqView (32-bit) 4

TempBook User’s Manual Using DaqView (32-bit) 4-1

Overview
Note: The TempBook does not use all the features documented here; e.g., no DBKs or digital I/O). The full
feature-set is described for the benefit of users running a combination of related devices.

DaqView is a Windows-based data acquisition program for operating the TempBook/66, DaqBooks,
DaqBoards, or Daq PC-Cards with DBK option cards and modules. DaqView was designed for ease-of-
use; programming expertise is not required. DaqView allows you to:

• Set up system parameters (selecting channels, gains, transducer types, etc) to acquire data.
• Save data to disk and to transmit data to spreadsheets and databases.
• Automatically re-arm the trigger function and save data in new files as needed.
• Configure and operate the DBK option modules (does not apply to TempBook).
• Configure the counter/timer into one of three modes for measuring frequency, totaling, or generating

pulse trains.
• Use the 2 analog outputs, including waveform generation for DaqBoards.
• Use digital I/O (for Daq*s with digital I/O).

PostView (included) can be launched from DaqView to view waveforms for up to 16 data channels.

DaqViewXL (optional) is an “add-in” for Microsoft Excel and is discussed at the end of this chapter.

DaqView’s Main Window
The figure shows DaqView’s main window and basic components.

DaqView’s Main Window

4-2 Using DaqView (32-bit) TempBook User’s Manual

Starting DaqView
Before running DaqView, the program and related libraries must be properly installed—if necessary, refer
to the installation chapter. Computer requirements include:

• 386 PC/AT or higher
• 8 Mbytes of RAM
• Windows 3.x or Windows 95
• IOtech data acquisition hardware
• (for DaqViewXL) Excel 5.0 or higher

To run DaqView, (double) click the DaqView icon. Depending on existing files, DaqView StartUp will
begin in 1 of 3 ways:

• Auto-Device Select with Full Setup. DaqView looks for a special auto-start file named
daqview.daq in the startup directory. If found, DaqView loads this setup with the specified device
and configuration. This setup file (if it exists) was created during a previous session.

• Auto-Device Select with Default Setup. If the auto-start file is not found, DaqView will try to use
settings from the program configuration file (daqview.ini) in the Windows directory. The default
setup (equivalent to the “file, New” menu item) uses DaqBook as the device on parallel port 1
(LPT1).

• Manual Device Select with Default Setup. If DaqView cannot connect to a device via a setup file
or defaults, it prompts you with a series of dialog boxes:

• The first dialog box allows you to retry a connection, select a device, or load a setup file.
• The Select Device button opens a device interface box; you can choose the hardware installed

or a simulated instrument. If you select a Daq, another dialog box will ask for device
parameters (printer port, interrupt level, and port protocol for the DaqBook; base address and
interrupt level for the DaqBoard and Daq PC-Card). Note: If the hardware is not available or
you just want to explore the software, select Simulated Instrument; the main window will
open.

• The Load File button allows you to find and open an existing setup file.
If the hardware is found, the DaqView’s main window will open. If no hardware is found, the system alerts
you and gives you another chance to select the working parameters. (For a DaqBook communication
problem, exit DaqView and run the utility test program.)

Beginner’s Tour of DaqView
A quick tour of DaqView will show you some of its basic features that are explained later. Proceed as
follows:

1. Open DaqView as described above. If your Daq or DBK signal conditioning units are not connected,
select Simulated Instrument as your device.

2. Select the next to last tool in the toolbar menu, Enable Input Reading Column.
• If in the Simulated Instrument mode, the Reading column of the Analog Input Spreadsheet

will display simulated data. Selecting the Enable Input Reading Column button again will
freeze the Reading column’s display.

• If working hardware is connected, the readings will quantify actual signals.

3. From the toolbar, select Bar Graph Meters, Analog Meters, or Digital meters and then the triangular
Start Indicator on the new window’s toolbar. Incoming data will be displayed in your chosen format.
The last item in the meter window’s toolbar allows you set the number of channels to be displayed.

4. From the DaqView main window toolbar, select Charts (third item from left), and the DaqView
Channel Display window will appear. If inactive, you must first enable the desired channel in the pull-
down box to the right of the chart. You can start or stop the data display with the Start or Stop
Indicators buttons. After stopping the indicators, you can reset the number of channels to be displayed.

5. As an introduction to system configuration, select Device from the pull-down menu and then Configure
Hardware Settings. The window Configure System Hardware will appear. On the left side of the
window, select any channel’s pull-down box to reveal the external connection options. Besides the
default, direct signal connection, you can choose among the DBK option cards and modules. The right
side of the screen sets up digital connections if your Daq* is so equipped.

TempBook User’s Manual Using DaqView (32-bit) 4-3

Analog Input Spreadsheet
The analog input spreadsheet (left half of main window) displays the analog input channels and allows you
to configure them. Each row shows a single channel and its configuration. The number of rows may vary,
but each row has seven columns. Some columns allow blocks of cells to be altered at the same time
(clicking a column header can select the entire column). Other columns allow only a single cell to change.
The table summarizes the function of each row.

Analog Input Spreadsheet Parameters on DaqView’s Main Window
Column Use and Description

CH The channel number (cannot be changed from this window). This number includes the main channel
number and the expansion board number and channel (if used). Expansion channels are
configured using the Hardware Configuration window described later in this chapter.

On This column allows you to select whether data will be collected from that channel. When a cell or
block of cells in this column is selected, a selection box will appear that allows “Yes” to enable or
“No” to disable the channel. Double-clicking a cell in this column will toggle the channel status.
The Edit menu allows you to Make All Channels Active or Make All Channels Inactive.

Type This column allows you to set the gain or input type for each channel. The gains and types will vary
among the option cards. A block of cells in this column can be selected for multiple channels with
the same type of option card. Double-clicking a cell will select the next available gain or type.

Pole This column shows the channel polarity (unipolar or bipolar) for each channel. The polarity can be
programmed here on a per channel basis when using a DaqBook/200, /216 and any DaqBoard or
a DBK15 Universal Current/Voltage expansion card. When using any other Daq*s, this column is
set in the Hardware Setup window. For selected cells that can be changed, a selection box will
display “Uni” or “Bi”. Double-clicking in a cell will toggle the polarity. If the hardware cannot
program the polarity, no selection box will be displayed.

Label This column contains a descriptive name for the input channel. The default label is the channel
number, but it can be changed to any 8 characters. This label is used when selecting a channel in
the analog trigger and chart selection lists.

Units This column allows you to change the engineering units of each channel and apply a linear equation
to the Daq data. When a cell or block of cells in this column is selected, the analog input box
displays entry options in a pull-down box. Selecting “mx+b” allows you to define m and b and the
engineering units label. The engineering units will then be displayed in the “Units” column and the
“mx+b” equation will be applied to the reading from the Daq before the reading is displayed or
written to disk. The X in this equation is the voltage read back from the Daq (or degrees Celsius
for a DBK14). For example, if a Daq channel is configured as bipolar and unity (×1) gain, the
default voltage would be ±5 V. This corresponds to an m of 1, a b of 0, and a unit of V. V can be
changed to millivolts by setting m to 1000 and units to mV. The Units column can also be used to
perform a software calibration of the Daq. This is done by reading known inputs at two different
points of the input voltage range (usually at 0 and full-scale) and solving the equation y = mx + b.
The full-scale voltage, which changes according to the gain of the channel, is 5 V/gain for bipolar
channels and 10 V/gain for unipolar channels.

Reading This column displays the Daq*’s analog input readings. This column cannot be altered by the user
and is enabled by selecting Enable Input Reading Column under the Acquisition menu or by
selecting “Start/Stop All Indicators” under the window menu. This column will update the readings
as fast as the computer will allow. The spreadsheet cannot be altered while the input reading
column is enabled.

Note: In addition to the analog inputs, there is a 16-bit digital input channel accessible on the DaqBook’s P3
connector. This high speed digital input, which is read at the same rate as any analog input, can be enabled or
disabled by clicking in the checkbox below the analog input spreadsheet.

4-4 Using DaqView (32-bit) TempBook User’s Manual

Acquisition Configuration
Next to the analog input spreadsheet on the right side of the main window is the acquisition configuration
section. The 3 main parts of this section include setup parameters for the trigger, the scan, and sampling.
These settings will be used when an acquisition to disk is started by selecting “Go” (last item in the toolbar).
When the trigger is satisfied, the scans are collected at the selected scan frequency and stored to disk in the
designated file. Note: the high-speed digital input channel is on the lower left of the screen and can be used
with Daq*s that support it.

Acquisition Configuration Options in DaqView’s Main Window
Parameter Options, Use, or Description

Trigger Event Selects the source of the trigger. The 4 possible trigger sources are:
Immediately—arms and executes the trigger immediately
Key Hit—arms the acquisition and waits for the user to hit a key
External TTL—waits for a falling or rising edge on pin 25 of connector P1
Channel Value—monitors level on selected channel; executes trigger when parameter is

satisfied
Trigger Slope Specifies whether the trigger responds to a rising or falling slope on the external TTL.
Analog Trigger

Level Setup
Sets the trigger based on a specified signal value on a particular channel.

Sequence Rep
Rate

The scan frequency can be set in units of seconds, milliseconds, minutes, or hours via a pull-
down box. Moving the slide switch or typing directly into the numeric field changes the rate.
The maximum scan frequency is dependent on the number of channels that are enabled and
whether or not averaging is enabled. Enabling more channels or averaging will lower the
maximum scan frequency.

Scan Count The number of scans can range from 1 to 10,000,000. A scan includes all of the channels that
are marked as “On” in the analog input configuration spreadsheet. The Pre-trigger scans is
the number of the scans to acquire before the executing the trigger event (available for
Channel Value trigger only). Note: If Pre-trigger scans are greater than 0, Pre-trigger and
Post-trigger samples cannot exceed 32508. If Pre-trigger scans equals 0, Post-trigger scans
cannot exceed 10,000,000.

Averaging The checkbox allows averaging of the analog input data to be enabled or disabled. Averaging
can be used to increase the effective accuracy of a noisy signal. Averaging will increase the
actual scan frequency and number of scans, but the perceived scan frequency and number of
scans (which is set by DaqView) does not change.

Note: Once the acquisition starts, these parameters cannot be altered.

Pull-Down Menu Items
Some (but not all) items in the pull-down menu can also be enabled from the toolbar. Their description in
the toolbar section is more detailed than presented in this section.

File
File Menu Items and Descriptions

New Set all parameters to their startup, default setting.
Open Set all parameters as directed by a specified setup file.
Save Save the existing configuration for later recall (overwrites the existing version).
Save As Saves the existing configuration for later recall; asks whether to overwrite the

original version or save under a new filename.
Convert Binary to ASCII Convert a previously acquired binary file to an ASCII file that can be read by

spreadsheets or other analysis programs.
Convert Binary to PostView

Binary
Convert a previously acquired binary file to a binary file that can be read by

PostView.
Exit Leave the DaqView program.

TempBook User’s Manual Using DaqView (32-bit) 4-5

Edit
Edit Menu Items and Descriptions

Make All Channels Inactive This command places a “No” in the On field of all channels. To scan
only a few channels, it may be easier to make all channels inactive,
then turn on the desired channels.

Make All Channels Active This command places a “Yes” in the On field of all of the channels.
Go To Channel
F7

This command pops up a dialog box which requires a channel number.
For hardware configurations with hundreds of channels, this is a quick
way to get around.

Fill Down
F8

For multiple cells selected within a column, this command copies the
value in the top cell to all the cells below.

Acquire

Window

Acquire Menu Items and Descriptions
Go This command arms the hardware for an acquisition to disk. When the trigger is

satisfied, the acquisition begins. All of the interactive I/O controls are disabled
while the system is armed. No acquisition parameters can be altered at this
time.

Enable Input
Reading
Column

This command reads the analog inputs and puts the numeric values in the
spreadsheet in the “Reading” column. If the Reading column is already
enabled, this command disables it.

Data File Setup This section determines the filename and type of file(s) that exist after an
acquisition. A filename can be typed in directly, or the Browse Files button
can be pressed to open a file selection dialog box (the selected file will be
placed directly into the filename field). During an acquisition, a raw binary file
is created and updated as data is read. After acquisition, an ASCII text file
and PostView binary file can be created if their checkboxes are enabled. Both
of these files can be read by the PostView. If the raw binary checkbox is not
enabled, the raw binary file will be deleted after creating the PostView or
ASCII file. The Multiple Destination (Auto Re-Arm) box directs DaqView to
create successive files for long data runs as needed. The “Validate File
Overwrite” checkbox (if checked) will require confirmation for overwriting
existing binary, ASCII, or IO files.

Window Menu Items and Descriptions
Charts Displays the charts window.
Bar Graph Meters Displays incoming data on a bar graph.
Analog Meters Displays incoming data on an analog dial.
Digital Meters Displays incoming data numerically.
Start All Indicators Starts displaying data in the Reading column and any open Chart or

meters window.
Stop All Indicators Stops displaying data in the Reading column and any open Chart or

meters window.
PostView Launches an instance of the PostView application.
Analog Output Displays the analog output window.
Digital I/O Displays the digital I/O window.
Counter/Timer Displays the counter/timer window.
Arbitrary Waveform Displays the arbitrary waveform window.

4-6 Using DaqView (32-bit) TempBook User’s Manual

Device

The Configure System Hardware Window
Select Device in the pull-down menu
and then Configure System
Hardware to set up the software for
your hardware. DaqView needs this
information to interpret the data and
provide controls to access the
hardware.

The Analog Input Option Cards
section allows the user to assign
DBK expansion cards to the 16
analog input channels. If no
expansion cards are added, leave the
default value (Direct Signal
Connection) on all 16 channels. As
expansion cards are added, this
window must be updated.

Selecting a DBK expansion board
will add channels in the main
window’s analog input spreadsheet. Channels associated with DBK expansion boards will also have more
gains or modes to choose from in the analog input spreadsheet. If needed, a dialog box will appear and
allow you to set sub-channel addresses or other parameters.

If using the DaqBook/100, DaqBook/112 orDaqBook/120, set the radio buttons for Single-Ended or
Differential and Bipolar or Unipolar to match the settings of the corresponding hardware jumpers (the
default hardware settings are Single-Ended and Bipolar). When Differential is selected, only 8 analog
inputs are available. When analog expansion boards are connected, set the Daq for Single-Ended.

If using the DaqBook/100, DaqBook/200, DaqBoard/100A or DaqBoard/200A, the Digital Option card
section allows you to configure the digital I/O hardware. If no DBK20 digital expansion boards are
connected, three 8-bit I/O ports are accessible from the main window. Six additional 8-bit ports are made
available in the main window for each DBK20 added. Make sure this window is kept updated for the actual
hardware used.

Device Menu Items and Descriptions
Select
 TempBook
 DaqBook

 DaqBoard

 Daq PC-Card

Simulated Device

Configures DaqView for operating the TempBook/66.
Brings up a dialog box to enter the printer port (LPT1 to LPT4), the interrupt level (3

to 7), and the port protocol (8-bit standard, 4-bit standard and several EPP
options). Note: for Fast EPP and SMC666 port protocols, interrupt levels include
3-7, 10, 11, 12, 14, 15.

Brings up a dialog box to enter a base address (0330 default) and interrupt level
(10, 11, 12, 14, 15).

Brings up a dialog box to enter a base address (0330 default) and interrupt level (5,
6, 7, 10, 11, 12, 14, 15).

Note: DaqView attempts to open a new session and communicate with the
selected device. If the hardware is found, the main window is opened. If no
hardware is found, the user is alerted to reconfigure and try again. If the
hardware still is not found, exit DaqView and try the DaqTest program.

Opens a DaqView session but does not attempt to communicate with hardware.
Instead, the application simulates the interaction between software and
hardware. If DaqView is attached to real hardware, this command will close that
session.

Configure
Hardware
Settings

Opens the hardware configuration window which allows the user to tell the software
how the hardware is set up. Setup sections include: Analog Input Option Cards
(DBKs), Digital Option Cards, Input Polarity, A/D Signal Reference, and D/A
External Reference.

Configure System Hardware Window

TempBook User’s Manual Using DaqView (32-bit) 4-7

Help
The Help menu provides access to the on-line Help file. About DaqView gives you the current software
version number.

Toolbar Items
Each item in the toolbar has its own icon and is also accessible from the pull-down menu. Placing the
cursor on the icon and clicking the mouse button enables the tool or opens the corresponding window.

Make All Channels Active (or Inactive)
The first 2 toolbar buttons can turn all the channels ON or OFF at a single stroke. This feature is
convenient during setup and troubleshooting or if only 1 or 2 channels must be set differently from the rest.
Both these commands are also available from the Edit pull-down menu.

Charts
The third toolbar item displays real-
time data in a strip-chart format for
several channels on the DaqView
Channel Display window. Charts are
enabled by selecting the triangular
“Play” button on the top left (see
figure). Before “playing”, at least one
chart must be assigned to an active
channel through the drop-down list on
the right side of the chart. For the
selected channel, you can change the
minimum and maximum values as
needed. This command can also be
enabled from the Window pull-down
menu.

Data is read and displayed in the
charts, meters, and Readings column
as fast as the computer will allow.
When an acquisition to disk has begun
using the Go command, the charts,
meters, and the Reading column take a
lower priority, updating only when
there is time in the acquisition-to-disk
task. Thus, the data seen in the charts
may not be the same as on the disk.
As the scan rate is increased, the
acquisition-to-disk task will take up
more processor time and the charts will be unable to keep up.

DaqView Display Charts

4-8 Using DaqView (32-bit) TempBook User’s Manual

Bar Graph Meters
Selecting the Bar Graph Meter icon brings
up the Bar Graph window to display
several channels in bar graph format. To
activate the display, select the Start button
on the left side of the toolbar (or Start All
Indicators in the pull-down menu or in the
toolbar). You can vary the number of
channels displayed by selecting the input
box at the end of the toolbar. The Grid
tool (next to last item on toolbar) is used
to arrange the display for convenient
reading. The pushpin icon in the center of
the toolbar locks this window on top of
other windows until you unlock it by
selecting the pushpin again.

Analog Meters
Selecting the Analog Meter icon brings up
the Analog Meters window to display
several channels in a dial/gage format. To
activate the display, select the Start button
on the left side of the toolbar (or Start All
Indicators in the pull-down menu or in the
toolbar). You can vary the number of
channels displayed by selecting the input
box at the end of the toolbar. The Grid tool
(next to last item on toolbar) is used to
arrange the display for convenient reading.
The pushpin icon in the center of the toolbar
locks this window on top of other windows
until you unlock it by selecting the pushpin
again.

Digital Meters
Selecting the Digital Meters icon brings up
the Digital Meters window to display
several channels in numeric format. To
activate the display, select the Start button
on the left side of the toolbar (or Start All
Indicators in the pull-down menu or in the
toolbar). You can vary the number of
channels displayed by selecting the input
box at the end of the toolbar. The Grid tool
(next to last item on toolbar) is used to
arrange the display for convenient reading.
The pushpin icon in the center of the toolbar
locks this window on top of other windows
until you unlock it by selecting the pushpin
again.

Bar Graph Window

Analog Meters Window

Digital Meters Window

TempBook User’s Manual Using DaqView (32-bit) 4-9

Properties of Meter Windows
The meter windows simulate the look
of 3 popular meter types: the bar
graph, the analog dial, and the digital
readout. Within each meter type, you
can adjust their display properties to fit
your needs. While in the meter
window, place the cursor in the
display area and click the right
mouse button; then select Properties.
A Properties window will appear and
allow you to:

• Channels - select a new channel
for display

• Scale - set the high and low points and the format (number of decimal places)
• Limits - set the high and low points and whether to display these limits
• Misc - set option to show the Trend Indicator and/or the Peak Hold Indicators.

Start (or Stop) All Indicators
These buttons use the same icons as many CD players (right-pointing triangle for start; square for stop). To
change some parameters, you may have to stop the data display. The Start and Stop All Indicator buttons
affect several windows if open, including: Reading column, Charts, Bar Graph Meters, Analog Meters, and
Digital Meters. Note: You can start or stop any of these active windows separately using their own Start,
Stop (or Pause) buttons.

Analog Output Window
The analog output window provides
interactive access to the two analog
outputs on the DaqBook/DaqBoard.
When set to the default internal reference,
these outputs can be set from 0 to +5
VDC. An external reference can be
connected ranging from -10 to +10 V
allowing unipolar output from 0 to the
inverse of the applied reference voltage.

The output voltage can be changed by
moving the slide control or placing the
cursor in the numeric field and entering a
valid voltage value. Selecting the
Execute button sends the voltage values
to the outputs.

Two versions of this window exist. If a
DBK2 or DBK5 are active in the Analog
Input Spreadsheet, the window will
accommodate voltage and current output
in addition to the DAC reference. Note:
This window is not available when the
arbitrary waveform window is visible.

Analog Output Window (with and without DBK2 & DBK5)

4-10 Using DaqView (32-bit) TempBook User’s Manual

Digital I/O Window
For DaqBook/100, DaqBook/200, DaqBoard/100A and DaqBoard/200A Only

The digital I/O window is displayed when
digital I/O button on the main window is
selected. This window provides
interactive control of all configured digital
I/O ports (as configured in the Hardware
Setup Window). The base unit has three
8-bit ports that can be configured as either
inputs or outputs. Up to twenty 8-bit ports
can be accessed when expansion boards
are added. When the Execute button is
pressed, all ports configured as outputs will be updated and all input ports will be read.

Counter/Timer Window
(For DaqBook/100, DaqBook/200,
DaqBoard/100A or DaqBoard/200A Only)

The counter/timer window is displayed
when the counter/timer (the red C/T
button) is selected from the toolbar.
Selecting the Execute button begins the
selected function. When the mode is
selected via the drop-down list, the
controls change accordingly (see figure).
Three C/T modes are available:

• Totals - counts signals from the
related pin on P3. Each channel has
its own Reset button.

• Pulse train generation - frequency
and the high (+5 VDC) percentage
of a cycle can be set for 5 channels.

• Frequency measurement - 2 ranges
are available.

As used by DaqView, the 9513 chip for
C/T functions has all 5 channels assigned
to 1 of 3 modes. Note: full function (using
separate channels and modes) of the 9513
is possible via API programming (refer to
the daqCtr* commands in the
Programmer’s Manual).

Digital I/O Window

3 Modes of the Counter/Timer

TempBook User’s Manual Using DaqView (32-bit) 4-11

Arbitrary Waveform Window
Unlike the DaqBook, the DaqBoard has a
waveform mode for its two analog output
channels. DaqView allows either or both
DaqBoard DACs to be configured in
interactive mode or waveform mode.

With a DaqBoard, both the Analog Output
and the Arbitrary Waveform are enabled.
Selecting Analog Output will pop-up the
standard analog output window for both
DaqBoard and DaqBook (see previous
section). Selecting Arbitrary Waveform will
pop-up the arbitrary waveform window for
one or both analog outputs.

Note: This window is not available when
the analog output window is visible.

In the Waveform box, you can select a
standard function generator waveform (sine,
square, triangle, sawtooth) or a freehand
drawing. In Freehand, move the mouse to the
waveform window and draw a waveform
using the left mouse button.

In the Channel Selection box, you can designate the channel for the waveform output. The DaqBoard
contains a waveform buffer with 4096 locations. If the two DACs are programmed to generate two
different waveforms, the buffer is split into two 2048-location buffers.

The Point Count field holds the number of points desired for the waveform. Using only one DAC (or both
DACs outputting the same waveform), a maximum of 4096 points are available. If two DACs are
outputting different waveforms, a maximum of 2048 points are available for each.

The Frequency Setup section sets up the waveform’s play rate. Two clock sources are available:
• D/A pacer with a rate set in the Sample Update Rate field. When using the D/A pacer, the Sample

Update Rate field controls the speed at which the DAC is updated.
• A/D pacer, the clock used by the analog input section of the DaqBoard. Using the A/D pacer clock

synchronizes the update of the DAC output with the analog input data collection.

The following example uses the A/D pacer clock as the update source. The DAC waveform is linearly
ascending voltage starting at count 1 and increasing by 1 count on every update. The analog input
frequency is set to 1 kHz.

Arbitrary Waveform Window

Synchronization of D/A and A/D

4-12 Using DaqView (32-bit) TempBook User’s Manual

The following example shows a DAC waveform with the clock source set to D/A pacer and the Sample
Update Rate field set to 5 kHz.

The Waveform Attributes section contains fields for setting the max and min for the Y-axis. The
DaqBoard’s DACs are 12-bit devices, providing 4096 discrete voltage outputs. If the default, internal
voltage reference is applied, the count of 4096 represents 5 V and 0 represents 0 V. The following equation
shows the relationship between counts and volts:

Vout = Count * (Vref / 4096)

Under the File menu item, Load and Save Waveform commands allow
you to save the displayed waveform(s) to disk in an ASCII format.
The files created are compatible with spreadsheets and word
processors, allowing you to numerically inspect and/or alter the saved
waveforms. The Load Waveform command reads any ASCII file of
numbers up to the number of points specified in the Point Count field.
The table shows the file format.

Under the Edit menu, Copy and Paste use the system clipboard to post
and receive waveform data. The data formats are identical to the Save
and Load operations. Copy and Paste are recommended for use with spreadsheets to numerically inspect
and/or modify waveforms. To start the waveforms playing on the DACs, click the Start Waveform! item in
the menu bar. Note: When the analog input section is set for analog input triggering, DAC1 is used
internally to supply the desired threshold voltage. In this case, DAC1 is not available for waveform output.

Enable Input Reading Column
The next to last toolbar item enables/disables the Reading column of the Analog Input Spreadsheet to
provide a numeric view of incoming data. This function toggles on and off when the button is repeatedly
selected. Some windows require the Reading column to be disabled while changing channels or other
parameters. This command is also available from the Acquire pull-down menu.

Go
The Go selection, the last icon on the toolbar, activates an acquisition of data to file. The Event option
under the Trigger Setup portion of the Main window determines when the Go process is initiated. The
Event selections are detailed in the Acquisition Configuration section of this chapter. After Go is selected,
the process is automatic beginning with the DaqView Armed screen. This screen posts the Trigger Armed
time as well as the Trigger Event information. The Go process makes use of the Data File Setup
parameters to format data collection.

Once the Trigger Event occurs, the DaqView Triggered screen appears. This screen allows you to witness
the data sampling parameters you set in the Main window prior to initiating the Go process as well as the
progress of the data acquisition. If file conversion is selected, the Go process is concluded by converting
the generated .BIN file from binary to ASCII data. The resulting file is saved under a user-specified
directory and file name or as a default under the DaqView subdirectory as DAQV.TXT. This .TXT file is
available for data processing or analysis by various software packages such as DaqViewXL.

DAC Waveform

Sample Waveform File Formats
1-channel: 2-channel:
2043<CR> 2432<TAB>293<CR>
1019<CR> 394<TAB>345<CR>
300<CR> 2934<TAB>3456<CR>
923<CR> 743<TAB>875 <CR>
Note: In the two-channel example,

the first column is channel 1, and
the second column (after the TAB)
is channel 2.

TempBook User’s Manual Using DaqView (32-bit) 4-13

PostView 1.5

PostView is an independent program that allows you to view waveforms recorded by DaqView, TempView,
and WaveView. As the data file is being created, a descriptor file used by PostView is also created.

The program can be started from a toolbar PostView icon, or from a pull-down menu. PostView can also
be started independent of DaqView, TempView, and WaveView. Multiple sessions of PostView can be
invoked concurrently to view several data files. To view a data file from within PostView, select Open
under the File menu. When PostView is started from DaqView, TempView, or WaveView, it automatically
opens the selected destination file. To view other files, use Open under the File menu for the applicable
program’s data files. To place channel waveforms into the window, select the number of charts from 1 to
16 under the Number of Charts menu item. Selecting N number of charts will automatically place the first
N channels in the charts. Use the Channel Select List Box (Upper right corner of each chart) to view the
desired channel. The Channel Select List Boxes contain labels that were assigned to the recorded channels
by DaqView, TempView, or WaveView.

The next table explains PostView toolbar items and is followed by a description of PostView Menu items.
Menu and toolbar items are identified by the following figure.

Open Print Zoom Out ><
Zoom In <>

Auto-
Scale

Show
Grid

Show
Markers

4-14 Using DaqView (32-bit) TempBook User’s Manual

PostView Menu Items
The following tables pertain to functions allowed by the pull-down menus.

File
Open Opens a data file created by DaqView, TempView, or WaveView. PostView automatically

detects whether the file contains ASCII or binary data.
Print Window Prints the present PostView window.
Exit Exits the File menu.

Number of Charts
1-16 After a data file has been opened, the number of desired charts can be selected. You can also

use this menu selection to change the number of charts displayed.

Go To
Percentage Automatically scrolls to the desired percent of the data file. For example, selecting 50% would

display a waveform segment from the middle of the data file.
Scan Number Automatically scrolls the waveforms so the desired scan number is in view. This menu

selection invokes a dialog box which displays the number of scans in the file.
Time Automatically scrolls the waveforms so the desired time is in view.
Trigger Point Automatically scrolls the waveforms so the trigger point (t = 0) is in view.

Options
Zoom Out Allows more of a chart(s) to be seen by decreasing the dimensions.
Zoom In Zooms in on a chart(s), providing more detail to a smaller area of the chart(s).
Autoscale Automatically generates a scale, in contrast to manually assigning the scale.
Show Grid
(Ctrl+G)

Allows grids to be turned off and on for all visible graphs. When a check appears in front of an
item, its indicator is on or visible.

Show Markers
(Ctrl+K)

Allows markers to be turned off and on for all visible graphs. When a check appears in front of
an item, its indicator is on or visible.

PostView Toolbar Items
Open Accesses the Open Data File window.
Print Sends the PostView chart(s) to an assigned printer.
Zoom Out
(><)

The Zoom Out button doubles the visible timebase, showing more of the waveform. For example, if 10
seconds of information is visible, clicking the Zoom Out button will show 20 seconds.

Zoom In
(<>)

The Zoom In button halves the visible timebase, showing less of the waveform. For example, if 10
seconds of information is visible, clicking the Zoom In button will show 5 seconds.

Autoscale Clicking the Auto Scale button adjusts the Y-axis labels so that the visible waveform fills 90% of the
chart’s range.

Y-axis Adjust The Y-axis Adjust fields show the chart’s minimum and maximum for visible charts in the engineering
units shown. Clicking the Auto Scale button automatically adjusts the Y-axis Adjust fields. To adjust
any chart’s minimum or maximum, place the cursor in the desired Y-axis Adjust field, and type in a
new value.

Show Grid Places a grid on the chart (s), or removes the grid if already present.
Show Markers Each chart contains a cross-hair marker that shows the numerical values of time and magnitude at its

present location in the waveform. The Markers start out at the far left of every chart, showing the
time and magnitude of the first visible point.

• Left mouse button allows the user to drag the marker of each chart independently.
• Right mouse button moves the markers from all the charts in unison.

The Options menu contains a function which allows you to turn markers on and off. When a check
appears in front of this item, its associated indicator is on or visible. Selecting the menu item toggles
the indicator (and the check mark) on and off.

Trigger Event
Marker

The Trigger Event Marker on the time axis shows the location of the trigger point.

Stop Event
Marker

The Stop Event Marker on the time axis shows the location of the stop point.

The Scroll Bar at the bottom of the PostView window (see figure on previous page) allows the waveforms to be scrolled
right or left in two ways:

1. When clicked on, the small left and right arrow boxes scroll the waveforms approximately 20%.
2. The plain scroll button shows the relative location of the visible region of the waveforms and can be

dragged along the scroll bar to any location desired.

TempBook User’s Manual Using DaqView (32-bit) 4-15

Help
Contents The initial PostView help screen provides an overview and listing of the help file contents. A

single topic can be selected for quick access to help information.
Search Type a word or select one from the Show Topics list for quick access to help information.
Help on Help Provides instructions on how to use a Windows Help system.
About Provides the PostView version number, for example: Version 1.5.

The PostView Timebase
PostView automatically detects the timebase of the data file and shows the time in seconds in the X-axis
labels.

PostView can create files containing multiple timebases, pre-trigger and post-trigger data for DaqView,
TempView and WaveView programs. In addition, with TempView you can create files which include post-
stop data.

The following comments apply to DaqView, TempView and WaveView, except when noted otherwise.
• Note that the trigger point (t = 0) is not necessarily the first point in the data file.
• If pre-trigger scans are available, they will be shown prior to the trigger point and labeled with

negative time numbers.
• • If a dual timebase was used when collecting the data, PostView will show a discontinuity in the time

axis when the timebase changes. When a dual timebase is used, the post-trigger scans are collected at
one frequency while the pre-trigger and post-stop scans are collected at another. Note: DaqView does
not support dual timebase.

• • For TempView, if post-stop data is available (scans collected after the Stop Event), they are
displayed after the Stop Event marker.
Note: This feature does not apply to DaqView and WaveView.

Data File Accessibility
Depending on the source program, file accessibility is as follows:
• DaqView and WaveView - PostView can access these program files only after the entire acquisition

is complete.
• TempView - PostView can access the program files at any time, even during the acquisition. If

PostView reaches the end of a file while TempView is still collecting data, PostView will automatically
display the new data as it becomes available.

Note: For the fastest display of waveforms, select binary data storage. This applies to DaqView, TempView and
WaveView.

Note: Post -Stop Timebase
does not apply to
DaqView or WaveView.

4-16 Using DaqView (32-bit) TempBook User’s Manual

DaqViewXL
DaqViewXL is a software component add-in that installs into Microsoft Excel and provides complete setup
and data acquisition within Excel under Windows 3.x or Windows 95. Acquired data is immediately placed
in an active spreadsheet, updating cells and graphics. Data is then analyzed and graphically displayed.
DaqViewXL:

• Augments Microsoft’s Excel spreadsheet software with data acquisition capability
• Provides strip-chart graphics for real-time data display
• Automatically converts data to engineering units

Once DaqViewXL is installed within Excel, the spreadsheet provides a floating toolbar that contains all the
data acquisition controls. This DaqViewXL tool bar (also accessible from Excel’s menu) can enable all
configuration and data acquisition tasks. The features of Excel and DaqView are seamlessly combined to
form a powerful data acquisition solution.

DaqViewXL performs like DaqView despite a slightly different user-interface. To set up your data
acquisition system, you just click on the Configure button in the Excel tool bar. DaqViewXL’s main
window appears with all of the controls required to configure data acquisition including setting up input and
output channels on an easy-to-use grid. Each column of the channel-configuration grid corresponds to
specific parameters in the data acquisition system and allows you to set these parameters on a per-channel
basis.

Excel provides a wealth of functions such as entering and editing data, building formulas to calculate
values, and creating graphics. Excel offers high-powered analysis functions including frequency domain
functions such as fast Fourier transforms (FFTs). The newest version, 5.0, includes additional features for
retrieving and analyzing data. Such features make it easy to set up a spreadsheet for processing raw data,
generating graphs, and printing reports. Excel is a perfect tool for repetitive tests where consistency is
important.

You can obtain automated reports by taking advantage of the Software Components concept. For example,
you can embed an Excel spreadsheet object into a Word document. When the spreadsheet object is
activated, it gives you access to DaqViewXL. In this case, the Word document holds all text, as well as an
embedded Excel spreadsheet object that holds raw and calculated data and graphics. Double-clicking on
the Excel object in Word can access DaqViewXL to efficiently prepare a statistical report. This compound
document lets you collect, configure, analyze, graph, and annotate data with a few clicks of a mouse button.

Program Requirements
DaqViewXL requires the following software:

• IOtech DaqBook/DaqBoard Series driver version 4.2 or later. (Installed components must include
the DaqView Windows utility program.)

• Microsoft Excel, version 5 or 7
• Microsoft Windows Operating System (Windows 3.1x, Windows for Workgroups 3.1x, Windows 95)

Installation of DaqViewXL Software
While running Windows (3.X, NT, or 95) insert DaqViewXL disk1 into the disk drive. From the Run
dialog box initiate the software installation by running the setup.exe file. Follow the on screen directions
(dialog boxes) to finish the software installation.

Note: If you are installing a new version of DaqViewXL over a previous version, you should perform the
steps in the section (Removing DaqViewXL from Excel) before installing the new version.

Running DaqViewXL for the First Time
DaqViewXL is an Excel Add-In that must be loaded into the Excel environment before it can be used.
Perform the following steps to install DaqViewXL:

1. Start Excel (refer to Microsoft documentation as needed).

TempBook User’s Manual Using DaqView (32-bit) 4-17

2. Select the "Tools" menu and click on "Add-Ins...".
This will open the "Add-Ins" dialog box, as shown
to the right.

3. Click the "Browse" button and locate the file
DAQVIEW.XLA. It should be in the install
directory specified in the setup program. Click
OK.

4. DaqViewXL should now be in the "Add-Ins
Available" list box. Make sure there is a check
next to it and click OK.

5. Excel loads the add-in which creates a Toolbar
and adds a menu item to the "Tools" menu. Click
on the "Tools" selection to see the new
DaqViewXL menu item.

6. After DaqViewXL is loaded in this manner, it will
automatically load whenever you run Excel. If
DaqView is not running at the time you launch
Excel (with DaqViewXL activated), the following
dialog box will appear.

Excel Add-Ins Dialog Box

Browse Option Dialog Box

Add-Ins Dialog Box (post addition)

DaqViewXL Tool Bar

DaqView Start Up Confirmation

4-18 Using DaqView (32-bit) TempBook User’s Manual

Removing DaqViewXL from Excel
If you do not want DaqViewXL to load each time you run Excel, perform the following steps:

1. Start Microsoft Excel.
2. Select the "Tools" menu and click on "Add-Ins...". This will open the "Add-Ins" dialog box.
3. Find the DaqViewXL line in the "Add-Ins Available" list box and click on it. This should remove the

checkmark next to the name. Click OK.

DaqViewXL will no longer auto-load with Excel. The next time you want to use DaqViewXL repeat the
above steps, this time checking the DaqViewXL line instead of unchecking it. DaqViewXL will then load
and once again become part of the Excel environment.

Basic Function of DaqViewXL
DaqViewXL performs much like the standard DaqView. With Excel’s macro capabilities, you can tailor
DaqViewXL to meet various requirements. Your knowledge of Excel will help you use all its tools for
better data acquisition and processing. The following sections give you the basics of how DaqViewXL can
organize and analyze your data. These basic ideas will give you the ability to explore all DaqViewXL has
to offer. The discussion mirrors previous sections and highlights the differences between DaqViewXL and
DaqView. The Hints and Tips section gives you tools and suggestions to improve your productivity with
DaqViewXL.

DaqView
XL Toolbar and Displays

TempBook User’s Manual Using DaqView (32-bit) 4-19

Configuring an Acquisition
After installing DaqViewXL and entering Excel, click the Configure... icon (first in the DaqViewXL
toolbar) to set up your system. This launches DaqViewXL’s main screen (see following figure). This
screen is slightly different from the stand-alone version shown at the beginning of the chapter.
(Specifically, DaqViewXL does not have a PostView button—Excel performs those functions better. Also,
the Go button is now the 2nd button on the toolbar window rather than the main screen.) The earlier
discussion of DaqView configuration still applies.

Real-Time Charting
DaqViewXL provides a real-time strip-chart window (same as in DaqView) for graphical presentation of
data. You can select up to 16 channels of data assigning a channel to each graph. The strip-chart
representation is continuous while data is being collected at up to 100 kHz. All 16 charts are synchronized
and have an adjustable scrolling speed that can be set independent of the sampling rate. Selecting the
Charts icon in the DaqViewXL toolbar will activate the following window. The chart selection must be
made prior to initiating an acquisition (selecting the Go! icon).

D
aqView Screen Within Excel

DaqViewXL Real-Time Charting

4-20 Using DaqView (32-bit) TempBook User’s Manual

Data Header
DaqViewXL’s optional data header supplies the global acquisition parameters and the configuration of each
channel and places this information directly in the spreadsheet along with acquired data. This information
includes channel gain or thermocouple type, bipolar/unipolar setting, units, and channel label. To activate
Data Headers select the Use Data Headers icon in the DaqViewXL toolbar.

Analog Output
DaqViewXL provides an analog output window to set the output voltage from the D/A converters. The
window features a slider and a text-entry field for each D/A converter. With DaqBoards, you can manually
draw a waveform using your mouse and output that waveform at up to 500 kHz per channel via the
DaqBoard’s two 12-bit D/A converters. Once the DaqView screen is open, select the Arbitrary Waveform
icon from the DaqView toolbar. The DaqView options previously discussed still apply.

DaqViewXL Data Header

DaqViewXL Static Voltages & Arbitrary Waveforms

TempBook User’s Manual Using DaqView (32-bit) 4-21

Digital I/O and Counter-Timers
DaqView’s digital I/O and counter-timer windows provide you with full interactive control of the
hardware’s on-board digital I/O and all digital expansion channels (up to 192). This window allows you to
configure each port as either an input or output. The Counter/Timer and Digital I/O icons are also
selectable from the DaqView toolbar. The counter-timers provide a pulse-train generator, which allows you
to specify the frequency and duty-cycle for digital output; a totalizer function, which counts pulses; and a
frequency measurement function.

Hardware Support
DaqView XL supports all models of the Daq Family including all DBK expansion modules and signal-
conditioning cards. To add DBK options to your system, you must select the desired signal conditioning in
the DaqViewXL Hardware Configuration window. Once configured, DaqViewXL automatically provides
access to new channels from within Excel. The channel configuration grid provides a means of configuring
each channel.

DaqViewXL also provides the engineering unit output required by each DBK option. For example, data
from a DBK current card is returned in amps, while data from a thermocouple or RTD card is returned in
degrees. When you see the mx+b feature in DaqViewXL’s units column, the collected data for the
associated channel is automatically converted to custom units and then scaled and offset before appearing in
the spreadsheet. The mx+b conversion features is especially handy for transducers such as strain gages
because it converts the return voltage value to units such as pounds or units of pressure. Depending on
DBK used, DaqViewXL accommodates special gains and other capabilities.

Hints and Tips for DaqViewXL
• Do not run DaqView first and then try to use DaqViewXL. When DaqViewXL runs DaqView it puts it into

a special "server" mode which supports transactions with "client" applications such as Excel. Normally
DaqView does not run in this mode and cannot support DaqViewXL.

• When you acquire data into a worksheet, some of the data may be displayed as a string of hash marks (e.g.
######). Excel will do this whenever the column is not wide enough to display all the digits of a number.
To eliminate the hash marks, just widen the column. An easy way to do this is to use the "Format,
Column, Auto Fit Selection" menu command. Immediately after an acquisition, all the rows and columns of
data are selected. Click this menu item to automatically fit all the columns to the new data.

• DaqViewXL does not have to be used as an Excel Add-In; it can also be loaded like a workbook. To do so,
open DAQVIEW.XLA using the File Open dialog box. The DaqViewXL toolbar and menu items will be
added to Excel and behave exactly as they would if DaqViewXL had been loaded as an Add-In. You can

DaqViewXL Digital I/O & Counter-Timers

4-22 Using DaqView (32-bit) TempBook User’s Manual

also load DaqViewXL via the Icon created by the setup program. When you do it this way, Excel does not
automatically create a blank workbook for you. After Excel loads with DaqViewXL, access the File, New
menu item to create one. When you load DaqViewXL like a workbook, it will not automatically load the
next time you run Excel. However, it will appear in the recently-used list at the bottom of the File menu,
making it easy to load the next time you run Excel.

• You can start an acquisition from an Excel macro as shown in the following VBA macro code example:

Sub Macro1()
Application.Run Macro:="menuGoDoIt"
End Sub

This is equivalent to clicking the Go! button on the DaqViewXL toolbar. It arms the hardware for an
acquisition, and if DaqView is set up to trigger on "External TTL" or "Channel Value", the acquisition will
take place automatically when the trigger condition is met. For acquisitions configured to trigger on a "Key
Hit", the acquisition will not start until the user presses the "Manual Trigger" button on the "DaqView
Armed" dialog box.

To automatically press this button after arming DaqView use the following macro:

Sub ArmAndKeyHit()
Application.Run Macro:="menuGoDoIt" 'presses the Go! button
SendKeys "{ENTER}" 'presses the space bar
End Sub

This macro will start a "Key Hit" acquisition immediately. (Note: Macro1, shown above, was generated by
Excel's macro recorder).

• If you chose to customize DaqViewXL’s toolbar, you should avoid removing buttons. If DaqViewXL
detects missing buttons it will prompt you to allow it to remove the toolbar and recreate it with all buttons.
You can decline to do so, but DaqViewXL will continue to ask you to recreate the toolbar each time it
starts-up. You can add buttons, rearrange them, and re-size the toolbar without getting this prompt.

• If DaqView cannot connect to your hardware on start-up, it will automatically switch to the Simulated
Instrument mode when loaded from DaqViewXL.

Programmer's Guide 5

TempBook User’s Manual Programmer's Guide 5-1

This and the following chapters are written for users who wish to write their own programs to control and
acquire data from the TempBook/66. This introductory chapter covers basic TempBook operation from a
programmer’s perspective and the options available for API drivers and languages. Further detail is
included through examples in the individual language support chapters, the command reference section, as
well as the chapters on thermocouple linearization and software calibration & zero compensation.

A Programmer’s View of TempBook Operations
The TempBook provides flexible, high-speed, multi-channel data acquisition capabilities through the use of
sophisticated analog and digital electronic circuitry. This circuitry allows up to 16 analog input channels to
be read at an aggregate 100 kHz sampling frequency. Each of these channels can be read as a unipolar (0 to
+V) or bipolar (±V) signal in one of 8 input voltage ranges. These ranges are determined by dividing the
standard 0 to 10V unipolar or ±5V bipolar input range by the available gains of ×1, 2, 5, 10, 20, 50, 100, or
200. Additionally, each input can be read as a single-ended or differential signal (selecting differential
limits the number of available channels to 8).

The conversion of these input signals to a digital code is accomplished by a high-performance 12-bit
analog-to-digital converter (ADC). (The resultant digital code can then be converted into a voltage via a
DAC). The output of the ADC is an unsigned value which is left-
justified within a 16-bit data word. In unipolar and bipolar modes,
the output code is related to the input voltage as shown in the table
(12-bit data format and standard input range shown).

The analog section of the TempBook consists of the following: channel select multiplexers, a single-ended /
differential selector, an instrumentation amplifier, programmable gain amplifiers, a unipolar / bipolar
selector, and the 12-bit ADC.

Block Diagram

The analog electronics are controlled by a scan-sequencer and control registers. The scan sequencer is
implemented with a 16-bit × 512-location FIFO RAM. Each entry in the scan sequencer contains channel,
gain, and polarity information. The single-ended/differential selection is controlled by a static control
register entry. Once triggered, the scan sequencer is stepped through at a constant rate of 100 kHz until all
sequencer entries have been read. At each step, an ADC conversion is performed and the resultant output is
stored in a data buffer implemented with another 16-bit × 512-location FIFO RAM.

A scan is initiated by a trigger from a software command, a TTL input, or an internal pacer clock. In
addition to the source, a mode (one-shot or continuous-trigger) can be selected.

• In one-shot mode, the scan sequencer is stepped through once (scanned) each time a trigger is
received.

• In continuous mode, the scan sequencer waits for the selected trigger for the initial scan but
subsequent scans are initiated by the pacer clock.

Note: the selection of one-shot or continuous mode has no effect if the pacer clock is selected as the trigger
source.

Bipolar Unipolar
0x000 = -5V 0x000 = 0V
0x800 = 0V 0x800 = 5V
0xFFF = 4.9976V 0xFFF = 9.9976V

5-2 Programmer's Guide TempBook User’s Manual

The pacer clock is generated by dividing an internal 1 MHz or 100 kHz clock by a programmable 32-bit
counter. The pacer clock source selection is made by an internal jumper setting, and the counter is
implemented by cascading P1 and P2 of an 8254 counter/timer chip.

The scan sequencer must be loaded prior to any data acquisition. When using the high-level data
acquisition routines (as in the adcex1 example programs), a single command can combine the scan
sequencer setup, trigger selection, pacer clock programming, and data collection. When using the low-level
data acquisition routines (as in adcex2 and adcex3), these operations are broken out into separate
commands.

Note: When connecting thermocouple and other low-level signals in addition to high-level signals, the
low-level signals should be programmed first into the scan sequence with the high-level signals
following in ascending order of signal magnitude.

In addition to the 16 externally available analog input channels, two internal
channels are provided for offset correction and thermocouple cold junction
compensation. The external analog input channels are addressed as channels 0 -
15, the CJC channel is at address 16, and the internal shorted channel is at 18.
The CJC channel must be included in the scan group when reading
thermocouples. This channel reading is used by the thermocouple linearization
functions. The shorted channel, when read at the same gain as an analog input
channel, can be used to remove offset errors present at run time in the analog
electronics. These topics are covered in greater detail in the Thermocouple
Linearization and Zero Compensation chapters.

Besides zero compensation, software compensation can be used to improve
measurement accuracy. The offset and gain errors present after factory
calibration are characterized and recorded within a unit-specific calibration-
constants file. The calibration-constants file is read by the data acquisition
program at run time. The collected ADC data can then be corrected for offset
and gain errors. This topic is covered in greater detail in the Software
Calibration and Zero Compensation chapter.

In addition to analog input, the TempBook provides digital I/O and
counter/timer function. Eight bits each of digital I/O are provided which can be
accessed as register-addressable I/O ports. Additionally, the 8 bits of digital
input can be read as part of the scan group by programming the scan sequencer
with the appropriate channel definition. The digital inputs are then returned
within the ADC data buffer and are right justified within the 16-bit data words.
When the digital inputs are read in this way, the timing relationship between the
trigger event and the analog & digital data is fixed.

A user accessible counter / timer is provided through the P0 port of the 8254.
This port can be configured into one of several modes including one-shot and
pulse-train generation as well as event counting. The clock input to this counter
/ timer port can be taken from an external or internal 100 kHz source. These
topics are covered in greater detail in the Command Reference chapter under the
tbkConfCntr0 and tbkSetTrig commands.

The flowchart diagram shows the operation of a typical TempBook data
acquisition program.

Data Acquisition
Program Flowchart

TempBook User’s Manual Programmer's Guide 5-3

Driver Options
The install disks include several “drivers” to accommodate various programming environments. This
section is intended to help you decide which API and programming language to use in developing your
application.

TempBook applications can be written to either the Standard TempBook API or to the Enhanced Daq* API.
Standard API functions have the tbk… prefix. The Enhanced API is a new format which can be
generically used with the TempBook, WaveBook, DaqBook, DaqBoard, and Daq PC-Card product lines.
Enhanced API functions share the daq… prefix. Generally,

• If starting with an existing TempBook Application written to Windows 3.1, the quickest port is to use
or re-write code to the Standard API.

• If writing a new application, it is best to write code to the Enhanced API due to its improved
performance and enhanced feature set (see following).

Standard API (tbk…)
The standard API was originally written for the TempBook’s Windows 3.1 driver. However, it can be used
under Windows 95 in 16-bit mode. The standard API is the only API option available for Windows 3.1 or
DOS applications. Use the Standard API:

• When developing a new or existing DOS application
• When developing a new or existing Windows 3.1 application

Enhanced API (daq…)
The Enhanced API for 32-bit systems has several features that are not present in the standard API:

• Multi-device - can concurrently handle up to 4 devices (including WaveBooks, Daq* products, and/or
TempBooks)

• Larger buffer - can handle up to 2 billion samples at a time
• Enhanced acquisition and trigger modes
• Direct-to-disk capabilities
• Wait-on-event features
• Uses multi-tasking advantages of Windows 95/NT

Because of these new features and other improvements, we recommend you use the Enhanced API
whenever feasible. Use the Enhanced API:

• When developing new or existing Windows 95 applications
• When developing new or existing Windows NT applications
• When porting an existing Standard API application to 32-bit mode to take advantage of the Enhanced

API features

Language Support
The following table shows language support for the standard and enhanced API drivers.

Standard API (16-bit) Supported Languages Enhanced API (or 32-bit Standard) Supported Languages
C/C++
 Microsoft Visual C++
 Borland C++ (v4.0 and greater)

C/C++
 Microsoft Visual C++ (v2.2 and greater)
 Borland C++ (v4.0 and greater)

BASIC
 Microsoft Visual Basic (v4.0 and previous)
 QuickBASIC

BASIC
 Microsoft Visual Basic (v4.0 and greater)

Pascal
 Turbo Pascal

Delphi
 Borland Delphi (v2.0)

5-4 Programmer's Guide TempBook User’s Manual

- Notes

Standard API Programming of the TempBook with C 6

TempBook User’s Manual Standard API Programming of the TempBook with C 6-1

Note: The enhanced API commands do not work exactly like the standard API commands; refer to chapters 10 and 11.

Accessing TempBook from a Windows Program
The structure of a Windows program generally dictates that actions take place in response to messages such
as an operator key-press, mouse action, menu selection, etc. This discussion covers the basic actions
needed to control the TempBook. How these actions are combined and coordinated in response to
Windows messages is up to the application designer.

Accessing TempBook from a C-for-Windows Program
There is one library and one header file located in the TEMPBOOK\WIN\C directory. The header file,
TEMPBOOK.H, must be included at the top of a C program using the #include command. This will
allow the compiler to know what TempBook functions and constants are available.

The library, TEMPBOOK.LIB, must be included in the application's makefile or project file so that the
linker will find the TempBook functions. This is a large memory model library; the appropriate compiler
and linker options for a large memory model program must be invoked. See the documentation for your
specific C compiler for a description on using header files, libraries, and memory models.

To use the example program located in the TEMPBOOK\DOS\C directory, create a makefile or project file
which consists of the TBKEX.C source file, TBKEX.RC resource file, TBKEX.DEF definition file,
TBKEX.ICO icon file and the TEMPBOOK.LIB library.

High-Level Analog Input
The following excerpt from TBKEX.C shows the usage of several high level analog input routines.

unsigned sample, buf [10], data[7], data2[80];
int i, scan, chan;

Set default operating mode to single-ended, bipolar. These parameters will affect all scanned channels.

tbkSetMode(0, 1);
Get one A/D sample from channel 0 at unity gain and print the unsigned integer that is returned. Since the
TempBook contains a 12-bit A/D converter, the least significant 4 bits are undefined. Shifting the value to
the right 4 times right justifies the 12 bit value in the 16 bit variable.

tbkRd(0, &sample, TgainX1);
sprintf(tempstr, "Result of tbkRd : %4d\r\n\r\n", sample>4);

Get 10 samples from channel 0, trigged by the pacer clock with a 1kHz sampling frequency at unity gain.
Once the data has been collected, print the 10 samples that were placed in the buffer.

tbkRdN(0, buf, 10, TtsPacerClock, 0, 1000, TgainX1);
sprintf("tempstr, "Results of tbkRdN:");
strcat (response, tempstr);
for(i=0;i<8;i++){

sprintf(tempstr, "%4d ", buf[i]>4);
strcat (response, tempstr);
}

Get 1 scan of channels 0 to 7 at unity gain. Once the data has been collected, print all 8 channel values.

tbkRdScan(0, 7, data, TgainX1);
sprintf(tempstr"\r\n\r\nResults of tbkRdscan:\r\n");
strcat (response, tempstr);
for(i=0;i<8;i++) {
sprintf(tempstr"Channel: %2d Data: %4d\r\n", i, data[i]>4);
 strcat (response, tempstr);
}

6-2 Standard API Programming of the TempBook with C TempBook User’s Manual

Get 10 scans of channels 0 to 7, triggered by the pacer clock with a 1kHz sampling frequency and unity
gain, then print the scan data.

tbkRdScanN(0, 7, data2, 10, TtsPacerClock, 0, 1000, TgainX1);
sprintf(tempstr"\r\nResults of tbkRdScanN Channels 0 - 7:");
strcat (response, tempstr);

for (scan=0 ; scan<8 ; scan++){
sprintf(tempstr"\r\nScan %d: ", scan);
 strcat (response, tempstr);

for (chan=0 ; chan<8 ; chan++){
sprintf(tempstr"%4d ", data2[(scan * 8) + chan]>4);
 strcat (response, tempstr);
 }
}

Low-Level Analog Input
The following excerpt from TBKEX.C shows the usage of several low-level analog input routines.

unsigned int buf[80], scan, chan;

Set the default operating mode to single-ended, bipolar. These parameters will affect all scanned channels.

tbkSetMode(0, 1);

Setup the scan sequencer for channels 0 to 7 with each channel in the scan at unity gain.

tbkSetMux(0, 7, TgainX1);

Set the scan frequency for 1kHz.

tbkSetFreq(1000);

Make the Pacer Clock the trigger source. This will also arm and trigger the system.

tbkSetTrig(TtsPacerClock, 0, 0, 1);

Read 10 scans of data into the language buffer buf, then print the 8 scan values.

tbkRdNFore(buf, 10);
sprintf(tempstr"\r\nResults of tbkRdNFore Channels 0 - 7:\r\n");
strcat (response, tempstr);

for (scan=0 ; scan<8 ; scan++)
 {
sprintf(tempstr"\r\nScan %d: ", scan);
strcat (response, tempstr);

 for (chan=0 ; chan<8 ; chan++){
sprintf(tempstr"%4d ", buf[(scan * 8) + chan]>4);
 strcat (response, tempstr);
 }
}

Analog Input in the Background
The following excerpt from TBKEX.C shows the usage of background acquisition functions. These
functions setup the TempBook to collect data in the background while your program continues to process
new lines of code in the foreground.

unsigned int data[80], chans[8], i, scan, chan;
unsigned chargains[8], polarities[8], active;
unsigned longcount;

TempBook User’s Manual Standard API Programming of the TempBook with C 6-3

Initialize the TempBook on LPT1 with interrupt 7.

tbkInit(LPT1, 7);

Set the default operating mode to single-ended, bipolar. These parameters will affect all scanned channels.

tbkSetMode(0, 1);

The TempBook has a sophisticated channel-gain sequencer that allows every channel in the defined scan to
have a different gain and unipolar/bipolar setting. The following array assignment will be used to setup the
sequencer to sample channels 0 through 7 in bipolar mode at unity gain. If desired, each channel could
have been assigned a different gain and/or unipolar/bipolar setting.

for(i=0;i<8;i++){
chans[i] = i;
gains[i] = TgainX1;
polarities[i] = 1;

}

Once the arrays are loaded with the desired channel numbers and their associated gain and unipolar/bipolar
settings, the following function uses them to load the sequencer.

tbkSetScan(chans, gains, polarities, 8);

Set the Clock to 1 Hz. (This assumes that the time base selection jumper is in the default 1 MHz position)

tbkSetClk(1000, 1000);

Make the Pacer Clock the trigger source.

tbkSetTrig(TtsPacerClock, 1, 0, 0);

Setup the background acquisition of 10 scans. As the data is collected, place it into the array called data.
Regardless of the status of the acquisition, the program will immediately return from this function call and
proceed to the next line in our code. The data will be collected via interrupts and placed in the specified
buffer in the background.

tbkRdNBack(data, 10, 0, 1);

At any point in the program, you can check the status of the background acquisition. The next lines of code
poll the background status continuously until it is no longer active, then it exits the do loop and proceeds
through the remainder of the program.

/* Check if acquisition is complete */
do
 {
tbkGetBackStat(&active, &count);
sprintf(tempstr"Transfer in progress : %2d scans acquired.\r",count);
 strcat(response, tempstr);
 }
while (active != 0);
sprintf(tempstr"\r\nAcquisition complete.\r\n\r\n");

Since the background acquisition is complete, print the data in the buffer.

sprintf(tempstr"Data Acquired:\r\n");
strcat(response, tempstr);
for (scan=0 ; scan<8 ; scan++){
sprintf(tempstr, "\nScan %d:", scan);
strcat(response, tempstr);
 for (scan=0 ; scan<8 ; scan++){
sprintf(tempstr" %4d", data[(scan * 8) + chan]>4);
strcat(response, tempstr);
}
}

6-4 Standard API Programming of the TempBook with C TempBook User’s Manual

General Purpose Digital I/O Functions
The following except from TBKEX.C shows the usage of the general purpose digital I/O functions.

unsigned char bit, in_bit, out_bit, out_byte, in_byte;

Read the state of the digital input bit 3, and place its value in in_bit.

tbkRdBit(3, &in_bit);

Depending on its state, print a message.

if (in_bit) {
 sprintf(tempstr, "Digital input #3 is set\r\n\r\n");
 strcat(response, tempstr);
 } else {
 sprintf(tempstr, "Digital input #3 is clear\r\n\r\n");
 strcat(response, tempstr);
}

Set the digital output bit 5 to a high state.

tbkWtBit(5, 1);

The following lines of code use the byte manipulation functions to perform a "walking-bit" test on the
digital output port.

for (bit=0 ; bit<8 ; bit++)
 {
 out_byte = 0x01<bit;// Put a 1 in the bit(th) location of a byte
 tbkWtByte(out_byte);// Write that byte to the digital output port
sprintf(tempstr, "Digital output byte written 0x%2x\n", out_byte);
 strcat(response, tempstr);
 }

Read the value from the digital input port (DI0 - DI7 inclusive), then print the result.

tbkRdByte(&in_byte);
sprintf(tempstr, "Digital input byte is 0x%2x\r\n", in_byte);
strcat(response, tempstr);

High-Speed Digital Input
The following excerpt from TBKEX.C shows the usage of the high-speed digital input function calls.

The high-speed digital port can be specified as a channel in the analog scan sequence, just like an analog
input channel. In this way the high-speed digital port data is acquired synchronously with the analog input
data and is placed in the same data buffer as the analog input data. This program sets up a scan which
includes analog channels and the high speed digital port.

unsigned chans[9], data[9], i, chan;
unsigned char gains[9], polarity[9];

Configure a scan consisting of analog input channels 0 through 7.

for (i=0 ; i<8 ; i++){
 chans[i] = i; // Analog input channels 0 - 7
 gains[i] = TgainX1; // Unity gain
}

Include the high speed port as the last channel in the scan. Note that the high speed channel can be placed
anywhere in the scan.

chans[8] = TchHighSpeedDig; // High speed digital inputs
gains[8] = TgainX1; // Put any gain, it doesn't matter

TempBook User’s Manual Standard API Programming of the TempBook with C 6-5

Initialize the TempBook on LPT1 with interrupt 7.

tbkInit(LPT1, 7);

Set the default operating mode to single-ended, bipolar. These parameters will affect all scanned channels.

tbkSetMode(0, 1);

Load the scan sequencer using a NULL pointer for the polarities array which indicates the use of the
default, global polarity.

tbkSetScan(chans, gains, 0, 9);

Set the trigger source to software trigger.

tbkSetTrig(TtsSoftware, 0, 0, 0);

Trigger a scan.

tbkSoftTrig();

Read the A/D FIFO buffer and print the results.

tbkRdNFore(data, 1);
sprintf("Analog input channels 0 - 7:\n");
strcat(response, tempstr);

for (chan=0 ; chan<8 ; chan++)
 sprintf(" %4d", data[chan]>4);
 strcat(response, tempstr);
}
sprintf(tempstr, "\nHigh speed digital inputs DI0 - DI7:\n");
sprintf(response, tempstr);

Counter/Timer Functions
The following excerpt from TBKEX.C shows the usage of the counter/timer functions.

The counter/timer port available through the termination card is the P0 port af an 8254 counter/timer chip.
This port can be configured through software to perform several functions which are described in detail in
the command reference section under the tbkConfCntr0 command. This example demonstrates the usage of
three of the counter/timer modes. Although the invocation of these modes is demonstrated there is no way
to observe the function of the port without the connection of external test equipment or circuitry.

Configure CTR0 to use the internal 100 kHz clock.

tbkSetTrig(TtsSoftware, 0, 1, 0);

Configure CTR0 to mode 0, High on Terminal Count and write a count value of 100 to counter 0. After this
the counter 0 output (OUT0) will go high after 100 pulses are received on the counter 0 gate input (GAT0).

tbkConfCntr0(Tc0cHighTermCnt);
tbkWtCntr0(100);

Configure CTR0 to mode 1, Hardware Retriggerable One-Shot and write a count value of 1000 to counter
0. After this a rising edge on the counter 0 input (GAT0) will cause the output to go high for 10 msec.*/

tbkConfCntr0(Tc0cOneShot);
tbkWtCntr0(1000);

Configure CTR0 to mode 3, Square Wave Generator and write a count value of 20 to counter 0. After this a
square wave of 5kHz frequency should be present on the counter 0 output (OUT0).

tbkConfCntr0(Tc0cSquareWave);
tbkWtCntr0(20);

6-6 Standard API Programming of the TempBook with C TempBook User’s Manual

High-Level Thermocouple Data Acquisition
The following excerpt from TBKEX.C demonstrates the use of the TempBook's high-level thermocouple
temperature data acquisition routines. These functions have combined scan sequencer setup, ADC data
collection, and thermocouple linearization.

int i, temp, temps[10];
unsigned buf[1200];

Set the default operating mode to differential, bipolar. These parameters will affect all scanned channels.

tbkSetMode(1, 1);

Get one temperature sample from a type J thermocouple on channel 0, then print the result.

tbkRdTemp(0, TbkTypeJ, &temp);
sprintf(tempstr, "\r\nResults of tbkRdTemp\r\n");
strcat(response, tempstr);
sprintf(tempstr, "Temperature: %4,1f \r\n", (float)temp/10.0);
strcat(response, tempstr);

Get one temperature value from a type J thermocouple on channel 0 which is the average of 10 acquired
values, then print the result. This has the effect of reducing the noise content of your signal. The 10
readings will be taken at 1kHz, with only one temperature value returned by the function.

tbkRdTempN(0, TbkTypeJ, 10, &temp, buf, 1000, 0);
sprintf(tempstr, "\r\nResults of tbkRdTempN\r\n");
strcat(response, tempstr);
sprintf(tempstr, "Temperature: %4.1f \r\n", (float)temp/10.0);
strcat(response, tempstr);

Get one temperature value from a type J thermocouple on channels 0 through 7, then print the result.

tbkRdTempScan(0, 7, TbkTypeJ, temps);
sprintf(tempstr, "\r\nResults of tbkRdTempScan\r\n");
strcat(response, tempstr);
for (i=0 ; i<8 ; i++){
 sprintf(tempstr, "Channel %d Temperature: %4.1f \r\n", i,
(float)temps[i]/10.0);
 strcat(response, tempstr);

Get 8 temperature values from type J thermocouple on channels 0 through 7 which are the average of 10
acquired values, then print the result. This has the effect of reducing the noise content of your signal. The
10 readings will be taken at 1kHz, with only one temperature value for each channel returned by the
function.

tbkRdTempScanN(0, 7, TbkTypeJ, 10, temps, buf, 1000, 0);
sprintf(tempstr, "\r\nResults of tbkRdTempScanN\r\n");
strcat(response, tempstr);
for (i=0 ; i<8 ; i++){
 sprintf(tempstr, "Channel %d Temperature: %4.1f \r\n", i,
(float)temps[i]/10.0);
 strcat(response, tempstr);
}

TempBook User’s Manual Standard API Programming of the TempBook with C 6-7

Thermocouple Linearization
The following excerpt from TBKEX.C, demonstrates the use of the TempBook's thermocouple linearization
routines.

unsigned i, chans[11], data[1100];
unsigned char gains[11];
int temp[8];

The following lines of code assign channels and gains to the arrays that will be used to create a scan
sequence. The position of the CJC in the scan and the assignment of the gains for all of the channels must
conform to the conventions used by the linearization routines. See the command reference section for more
information on scan configuration.

 /* Configure chans array */
chans[0] = 18; /* Shorted channel*/
chans[1] = 18; /* Shorted channel */
chans[2] = 16; /* CJC channel */
chans[3] = 0; /* Thermocouple on channel 0 */
chans[4] = 1; /* Thermocouple on channel 1 */
chans[5] = 2; /* Thermocouple on channel 2 */
chans[6] = 3; /* Thermocouple on channel 3 */
chans[7] = 4; /* Thermocouple on channel 4 */
chans[8] = 5; /* Thermocouple on channel 5 */
chans[9] = 6; /* Thermocouple on channel 6 */
chans[10] = 7; /* Thermocouple on channel 7 */

 /* Configure gains array */
gains[0] = TbkBiCJC; /* Bipolar CJC gain setting */
gains[1] = TbkBiTypeJ; /* Bipolar Type J Thermocouple gain setting */
gains[2] = TbkBiCJC; /* Bipolar CJC gain setting */
gains[3] = TbkBiTypeJ; /* Bipolar Type J Thermocouple gain setting */
gains[4] = TbkBiTypeJ; /* Bipolar Type J Thermocouple gain setting */
gains[5] = TbkBiTypeJ; /* Bipolar Type J Thermocouple gain setting */
gains[6] = TbkBiTypeJ; /* Bipolar Type J Thermocouple gain setting */
gains[7] = TbkBiTypeJ; /* Bipolar Type J Thermocouple gain setting */
gains[8] = TbkBiTypeJ; /* Bipolar Type J Thermocouple gain setting */
gains[9] = TbkBiTypeJ; /* Bipolar Type J Thermocouple gain setting */
gains[10] = TbkBiTypeJ; /* Bipolar Type J Thermocouple gain setting */

Set the default operating mode to differential, bipolar. These parameters will affect all scanned channels.

tbkSetMode(1, 1);

Configure the scan sequencer,with the desired channels and gains. A zero for the polarity argument forces
the use of the default polarity for all of the channels.

tbkSetScan(chans, gains, 0, 11);

Set the pacer clock for a 1 msec period.

tbkSetFreq(1000);

Use the Pacer Clock as the trigger source.

tbkSetTrig(TtsPacerClock, 0, 0, 0);

The following function tells all of the TbkTC functions to to use zero correction. Zero correction
compensates for offset drift in the electronics due to ambient temperature changes and/or age.

tbkTCAutoZero(1);

Read 100 scans and place the raw data in the supplied buffer.

tbkRdNFore(data, 100);

Reset the trigger to prevent a buffer overrun.

6-8 Standard API Programming of the TempBook with C TempBook User’s Manual

tbkSetTrig(TtsSoftware, 1, 0, 0);

Configure and perform Thermocouple Linearization with block averaging on the raw ADC counts. The raw
counts are in the data buffer, data. The converted temperature values will be returned in the buffer temp.
With block averaging enabled one temperature, the average of all 100 scans, will be returned for each
channel.

tbkTCSetup(11, 2, 8, TbkTypeJ, 1, 0);
tbkTCConvert(data, 100, temp, 8);

The converted temperatures can now be printed to the screen.

for (i=0 ; i<8 ; i++){
 sprintf(tempstr, "%8.1f ", (float)temp[i] / 10.0);
 strcat(response, tempstr);
}
sprintf(tempstr, "\r\n");
strcat(response, tempstr);
SendDlgItemMessage(myDlg, 101, WM_SETTEXT, 0, (LONG)(LPSTR)response);
EmptyMessageQueue(myDlg);

Sample Programs

High-Level Analog Input
/***
File:Adcex1.c
Description:This example demonstrates the use of TempBook/66s highest level
ADC functions. These functions have combined scan sequencer setup and ADC
data collection.
Functions Used:tbkRd(unsigned chan, unsigned *sample, unsigned char gain)
tbkRdN(unsigned chan, unsigned *buf, unsigned count, unsigned char trigger,
unsigned char oneShot, float freq, unsigned char gain) tbkRdScan(unsigned
startChan, unsigned endChan, unsigned * buf, unsigned char gain)
tbkRdScanN(unsigned startChan, unsigned endChan, unsigned * buf, unsigned
count, unsigned char trigger, unsigned char oneShot, float freq, unsigned
char gain)
 ***/

unsigned sample, buf[10], data[7], data2[80];
int i, scan, chan; sprintf(response,"\r\nAdcex1.c\r\n\r\n");

 /* Set the default operating mode to single-ended, bipolar */
tbkSetMode(0, 1);

 /* Get 1 ADC sample from channel 0 at unity gain. */
tbkRd(0, &sample, TgainX1);

 /* Print results using a 12 bit data format */
 sprintf(tempstr,"Result of tbkRd : %4d\r\n\r\n", sample>4);
strcat(response,tempstr);

 /* Get 10 samples from channel 0, trigged by the pacer clock with a */
 /* 1000 Hz sampling frequency at unity gain. */
tbkRdN(0, buf, 10, TtsPacerClock, 0, 1000, TgainX1);

 /* Print the results using a 12 bit data format */

sprintf(tempstr,"Results of tbkRdN:");
strcat(response,tempstr);

for(i=0;i<8;i++) {
 sprintf(tempstr,"%4d ", buf[i]>4);
 strcat(response,tempstr);
}
 /* Get 1 sample from channels 0 through 7 at unity gain. */

TempBook User’s Manual Standard API Programming of the TempBook with C 6-9

tbkRdScan(0, 7, data, TgainX1);

 /* Print the results using a 12 bit data format */

sprintf(tempstr,"\r\n\r\nResults of tbkRdscan:\r\n");
strcat(response,tempstr);

for(i=0;i<8;i++) {
 sprintf(tempstr,"Channel: %2d Data: %4d\r\n", i, data[i]>4);
 strcat(response,tempstr);
}

 /* Get 10 samples from channels 0 - 7, triggered by the pacer clock
 with a 1000 Hz sampling frequency and unity gain. */

tbkRdScanN(0, 7, data2, 10, TtsPacerClock, 0, 1000, TgainX1);

 /* Print the results using a 12 bit data format */

sprintf(tempstr,"\r\nResults of tbkRdScanN Channels 0 - 7:");
strcat(response,tempstr);

for (scan=0 ; scan <8; scan++) {
 sprintf(tempstr,"\r\nScan %d: ", scan);
 strcat(response,tempstr);

 for (chan=0 ; chan<8 ; chan++) {

 sprintf(tempstr,"%4d ", data2[(scan * 8) + chan]>4)
; strcat(response,tempstr);
 }
 }
 SendDlgItemMessage(myDlg, 101, WM_SETTEXT, 0, (LONG)(LPSTR)response)
; EmptyMessageQueue(myDlg);
}

Low-Level Analog Input
/***
File:Adcex2.c
Description:This example demonstrates the use of the TempBook/66's lower
 level ADC functions. These functions allow separate scan
sequencer setup, trigger source selection, and ADC data collection.
Functions Used:bkSetMux(unsigned startChan, unsigned endChan, unsigned char
gain)
tbkSetFreq(float freq) tbkSetTrig(unsigned char trigger, unsigned char
oneShot, unsigned char ctr0mode, unsigned char pacerMode)
tbkRdNFore(unsigned _far *buf, unsigned count)
 ***/

 unsigned int buf[80], scan, chan;
 sprintf(response,"\r\nAdcex2.c\r\n");

 /* Set the default mode of operation to single-ended bipolar */
 tbkSetMode(0, 1);

 /* Set the scan sequencer for channels 0 - 7 at unity gain */
 tbkSetMux(0, 7, TgainX1);

 /* Set the scan frequency for 1000 Hz */
 tbkSetFreq(1000);

 /* Set the trigger source for the Pacer Clock. Note that the trigger
 is armed immediately */
 tbkSetTrig(TtsPacerClock, 0, 0, 1);

 /* Read 10 scans of data */

6-10 Standard API Programming of the TempBook with C TempBook User’s Manual

 tbkRdNFore(buf, 10);

 /* Print the results using a 12 bit data format */
 sprintf(tempstr,"\r\nResults of tbkRdNFore Channels 0 - 7:\r\n");
 strcat(response,tempstr);

 for (scan=0 ; scan<8 ; scan++) {
 sprintf(tempstr,"\r\nScan %d: ", scan); strcat(response,tempstr);
 for (chan=0 ; chan<8 ; chan++) {
 sprintf(tempstr,"%4d ", buf[(scan * 8) + chan]>4);
 strcat(response,tempstr);
 }
 }

 sprintf(tempstr,"\r\n");
 strcat(response,tempstr);

 SendDlgItemMessage(myDlg, 101, WM_SETTEXT, 0, (LONG)(LPSTR)response);
 EmptyMessageQueue(myDlg);
}

Analog Input in the Background
/***
File: Adcex3.c
Description:This example demonstrates the use of the TempBook/66's
 background transfer routines.
Functions Used:tbkRdNBack(unsigned _far *buf, unsigned count, unsigned char
cycle,
unsigned char updateSingle)
tbkGetBackStat(unsigned char _far *active, unsigned long _far *count)
 ***/

 unsigned int data[80], chans[8], i, scan, chan;
 unsigned char gains[8], polarities[8], active;
 unsigned long count;

 sprintf(response,"\r\nAdcex3.c\r\n\r\n");

 /* Set the default mode of operation to single-ended bipolar */
 tbkSetMode(0, 1);

 /* Set channels, gains, & polarities arrays to channels 0-7,
 bipolar, at unity gain. */

 for(i=0;i<8;i++)
 {
 chans[i] = i;
 gains[i] = TgainX1;
 polarities[i] = 1;
 }

 /* Load the scan sequencer FIFO */
 tbkSetScan(chans, gains, polarities, 8);

 /* Set Clock : 1Hz - xtal set to 1MHz */
 tbkSetClk(1000, 1000);

 /* Set pacer clock trigger source */
 tbkSetTrig(TtsPacerClock, 1, 0, 0);

 /* Read 10 scans of data in the background, cycle off, */
 /* update on each scan */
 tbkRdNBack(data, 10, 0, 1);

 /* Check if acquisition is complete */
 do {

TempBook User’s Manual Standard API Programming of the TempBook with C 6-11

 tbkGetBackStat(&active, &count);
 sprintf(tempstr,"Transfer in progress : %2d scans acquired.\r",count);
 strcat(response,tempstr);
 }
 while (active != 0);
 sprintf(tempstr,"\r\nAcquisition complete.\r\n\r\n");
 strcat(response,tempstr);

 /* Print results using a 12 bit data format */

 sprintf(tempstr,"Data Acquired:\r\n");
 strcat(response,tempstr);

 for (scan=0 ; scan<8 ; scan++)
 {
 sprintf(tempstr,"\r\nScan %d:", scan);
 strcat(response,tempstr);

 for (chan=0 ; chan <8; chan++) {
 sprintf(tempstr," %4d", data[(scan * 8) + chan]>4);
 strcat(response,tempstr);
 }
 }

 sprintf(tempstr,"\r\n");
 strcat(response,tempstr);

 SendDlgItemMessage(myDlg, 101, WM_SETTEXT, 0, (LONG)(LPSTR)response);
 EmptyMessageQueue(myDlg);
}

General Purpose Digital I/O
/***
File: Adcex3.c
Description:This example demonstrates the use of the TempBook/66's general
purpose digital I/O ports.
Functions Used:tbkRdBit(unsigned char bitNum, unsigned char *bitVal)
tbkRdByte(unsigned char *byteVal)
tbkWtBit(unsigned char bitNum, unsigned char bitVal)
tbkWtByte(unsigned char byteVal)
 ***/

*/ unsigned char bit, in_bit, out_byte, in_byte;
 sprintf(response,"\r\nDigex1.c\r\n\r\n");

 /* Read the state of digital input DI3 */
 tbkRdBit(3, &in_bit);

 if (in_bit) {
 sprintf(tempstr,"Digital input #3 is set\r\n\r\n");
 strcat(response,tempstr); } else {
 sprintf(tempstr,"Digital input #3 is clear\r\n\r\n");
 strcat(response,tempstr); }

 /* Set digital output DO5 */
 tbkWtBit(5, 1);
 /* Perform a 'walking bit' test by setting each digital
 output in order from DO0 to DO7 */
 for (bit=0 ; bit<8 ; bit++)
 {
 out_byte = 0x01<bit;
 // Put a 1 in the bit(th) location of a byte
 tbkWtByte(out_byte);

 // Write that byte to the digital output port

6-12 Standard API Programming of the TempBook with C TempBook User’s Manual

 sprintf(tempstr,"Digital output byte written 0x%2x\r\n", out_byte);
strcat(response,tempstr);
 }

 /* Read the value from the digital input port (DI0 - DI7 inclusive) */
 tbkRdByte(&in_byte);

 sprintf(tempstr,"Digital input byte is 0x%2x\r\n", in_byte);
 strcat(response,tempstr);
 SendDlgItemMessage(myDlg, 101, WM_SETTEXT, 0, (LONG)(LPSTR)response);
EmptyMessageQueue(myDlg);
}

High-Speed Digital Input
/***
File: Digex2.c
Description:This example demonstrates the use of the TempBook's high speed
digital inputs.
Functions Used:tbkSetScan(unsigned *chans, unsigned char *gains, unsigned
char *polarity, unsigned count)
 tbkRdNFore(unsigned _far *buf, unsigned count)
 ***/

 unsigned chans[9], data[9], i, chan;
 unsigned char gains[9], polarity[9];

 sprintf(response,"\nDigex2.c\n\n");

 /* Configure the channels and gains arrays for analog inputs 0-7 */
 /* plus the high speed digital inputs */

 for (i=0 ; i<8 ; i++)
 {
 chans[i] = i; /* Analog input channels 0 - 7 */
 gains[i] = TgainX1; /* Unity gain */
 polarity[i] = 1; /* Bipolar */
 }

 chans[8] = TchHighSpeedDig; /* High speed digital inputs */
 gains[8] = TgainX1; /* Put any gain, it doesn't matter */
 polarity[8] = 1; /* Put any polarity, it doesn't matter */

 /* Set default operation to single-ended, bipolar */

 tbkSetMode(0, 1);

 /* Load the scan sequencer, NULL pointer for polarities array */
 /* indicates use default polarity */

 tbkSetScan(chans, gains, 0, 9);

 /* Set software trigger source */

 tbkSetTrig(TtsSoftware, 0, 0, 0);

 /* Trigger a scan */

 tbkSoftTrig();

 /* Read the ADC FIFO buffer */

 tbkRdNFore(data, 1);

 /* Print the results */

 sprintf(tempstr,"Analog input channels 0 - 7:\n");

TempBook User’s Manual Standard API Programming of the TempBook with C 6-13

 strcat(response,tempstr);

 for (chan=0 ; chan<8 ; chan++) {
 sprintf(tempstr," %4d", data[chan]>4);
 strcat(response,tempstr);
 }

 sprintf(tempstr,"\nHigh speed digital inputs DI0 - DI7:\n");
 strcat(response,tempstr);

 sprintf(tempstr," 0x%x", (char)data[8]);
 strcat(response,tempstr);

 SendDlgItemMessage(myDlg, 101, WM_SETTEXT, 0, (LONG)(LPSTR)response);
 EmptyMessageQueue(myDlg);
}

Counter Timer Functions
/************************************
File: Ctrex1.c
Description: This example demonstrates the use of the TempBook's
 counter timer functions.
Functions Used:
 tbkConfCntr0(unsigned char config)
 tbkWtCntr0(unsigned cntr0)
*************************************/

 sprintf(response,"\r\nctrex1.c\r\n\r\n");

 /* Configure CTR0 to use the internal 100kHz clock */

 tbkSetTrig(TtsSoftware, 0, 1, 0);

 /* Configure CTR0 to mode 1, Hardware Retriggerable One-Shot and write
 a count value of 1000 to counter 0. After this a rising edge on the
 counter 0 input (GAT0) will cause the output to go high
 for 10 msec. */

 tbkConfCntr0(Tc0cOneShot);

 tbkWtCntr0(1000);

 /* Configure CTR0 to mode 3, Square Wave Generator and write a count
 value of 20 to counter 0. After this a square wave of 5kHz
 frequency should be present on the counter 0 output (OUT0) */

 tbkConfCntr0(Tc0cSquareWave);

 tbkWtCntr0(20);
 /* Configure CTR0 to use an external clock */
 tbkSetTrig(TtsSoftware, 0, 0, 0);
 /* Configure CTR0 to mode 0, High on Terminal Count and write a count
 value of 100 to counter 0. After this the counter 0 output (OUT0)
 will go high after 100 pulses are received on the counter 0 clock
 input (CLK0) */
 tbkConfCntr0(Tc0cHighTermCnt);
 tbkWtCntr0(100);
 SendDlgItemMessage(myDlg, 101, WM_SETTEXT, 0, (LONG)(LPSTR)response);
 EmptyMessageQueue(myDlg);
}

6-14 Standard API Programming of the TempBook with C TempBook User’s Manual

High-Level Thermocouple Measurement

File:
Description:
This example demonstrates the use of the TempBook's high level
 thermocouple temperature data acquisition routines. These
 functions have combined scan sequencer setup, ADC data
 collection, and thermocouple linearization.
Functions Used:
tbkRdTemp(unsigned chan, unsigned tcType, int * temp)
 tbkRdTempN(unsigned chan, unsigned tcType, unsigned count, int *
temp,
unsigned * buf, float freq, unsigned avg) tbkRdTempScan(unsigned startChan,
unsigned endChan,unsigned tcType, int * temp) tbkRdTempScanN(unsigned
startChan,
unsigned endChan, unsigned tcType, unsigned count, int * temp, unsigned *
buf,
float freq, unsigned avg)
**/

 int i, temp, temps[10];
 unsigned buf[1200];

 sprintf(response,"\r\nTempex1.c\r\n");

 /* Set the default mode of operation to differential bipolar */

 tbkSetMode(1, 1);

 /* Get 1 ADC sample from a type J thermocouple on channel 0 and
 convert the reading to a temperature. Print the result. */

 tbkRdTemp(0, TbkTypeJ, &temp);
 sprintf(tempstr,"\r\nResults of tbkRdTemp\r\n");
 strcat(response,tempstr);

 sprintf(tempstr,"Temperature: %4.1f \r\n", (float)temp/10.0);
 strcat(response,tempstr);

 /* Get 10 ADC samples from a type J thermocouple on channel 0 and
 convert the readings to a single temperature using block averaging.
 Print the results. */

 tbkRdTempN(0, TbkTypeJ, 10, &temp, buf, 1000, 0);

 sprintf(tempstr,"\r\nResults of tbkRdTempN\r\n");
 strcat(response,tempstr);

 sprintf(tempstr,"Temperature: %4.1f \r\n", (float)temp/10.0);
 strcat(response,tempstr);

 /* Get 1 ADC sample each from type J thermocouples on channels 0
through
 7 and convert the readings to temperatures. Print the results */

 tbkRdTempScan(0, 7, TbkTypeJ, temps);

 sprintf(tempstr,"\r\nResults of tbkRdTempScan\r\n");
 strcat(response,tempstr);

 for (i=0 ; i<8 ; i++) {
 sprintf(tempstr,"Channel %d Temperature: %4.1f \r\n", i,
(float)temps[i]/10.0);
 strcat(response,tempstr);
 }

TempBook User’s Manual Standard API Programming of the TempBook with C 6-15

 /* Get 10 ADC samples each from type J thermocouples on channels 0
 through 7 and convert the readings to temperatures using block
 averaging. Print the results */

 tbkRdTempScanN(0, 7, TbkTypeJ, 10, temps, buf, 1000, 0);

 sprintf(tempstr,"\r\nResults of tbkRdTempScanN\r\n");
 strcat(response,tempstr);

 for (i=0 ; i<8 ; i++) {
 sprintf(tempstr,"Channel %d Temperature: %4.1f \r\n", i,
(float)temps[i]/10.0); strcat(response,tempstr);
 }

SendDlgItemMessage(myDlg, 101, WM_SETTEXT, 0, (LONG)(LPSTR)response);
EmptyMessageQueue(myDlg);
}

Low-Level Thermocouple Linearization

File: Description:
This example demonstrates the use of the TempBook's thermocouple
linearization
routines.
Functions Used:
tbkTCSetup(unsigned nscan, unsigned cjcPosition, unsigned ntc,
unsigned tcType, unsigned char bipolar, unsigned avg)
tbkTCConvert(unsigned _far *counts, unsigned scans,
int _far *temp, unsigned ntemp)
 ***/

 */ unsigned i, chans[11], data[1100];
 unsigned char gains[11]; int temp[8];
 sprintf(response,"\r\nTempex2.c\r\n");

 /* Configure chans array */
chans[0] = 18; /* Shorted channel*/
chans[1] = 18; /* Shorted channel*/
chans[2] = 16; /* CJC channel */
chans[3] = 0; /* Thermocouple on channel 0 */
chans[4] = 1; /* Thermocouple on channel 1 */
chans[5] = 2; /* Thermocouple on channel 2 */
chans[6] = 3; /* Thermocouple on channel 3 */
chans[7] = 4; /* Thermocouple on channel 4 */
chans[8] = 5; /* Thermocouple on channel 5 */
chans[9] = 6; /* Thermocouple on channel 6 */
chans[10] = 7; /* Thermocouple on channel 7 */

 /* Configure gains array */
 gains[0] = TbkBiCJC; /* Bipolar CJC gain setting */
 gains[1] = TbkBiTypeJ; /* Bipolar Type J Thermocouple gain setting */
 gains[2] = TbkBiCJC; /* Bipolar CJC gain setting */
 gains[3] = TbkBiTypeJ; /* Bipolar Type J Thermocouple gain setting */
 gains[4] = TbkBiTypeJ; /* Bipolar Type J Thermocouple gain setting */
 gains[5] = TbkBiTypeJ; /* Bipolar Type J Thermocouple gain setting */
 gains[6] = TbkBiTypeJ; /* Bipolar Type J Thermocouple gain setting */
 gains[7] = TbkBiTypeJ; /* Bipolar Type J Thermocouple gain setting */
 gains[8] = TbkBiTypeJ; /* Bipolar Type J Thermocouple gain setting */
 gains[9] = TbkBiTypeJ; /* Bipolar Type J Thermocouple gain setting */
 gains[10] = TbkBiTypeJ; /* Bipolar Type J Thermocouple gain setting */

 /* Set the default mode of operation to differential bipolar */
 tbkSetMode(1, 1);

 /* Configure the scan sequencer, will use default polarity. */
 tbkSetScan(chans, gains, 0, 11);

6-16 Standard API Programming of the TempBook with C TempBook User’s Manual

 /* Set the pacer clock for a 1 msec period */
 tbkSetFreq(1000);

 /* Configure for pacer clock trigger, continuous mode. */
 tbkSetTrig(TtsPacerClock, 0, 0, 0);

 /* Tell tbkTC.. functions to use zero correction */
 tbkTCAutoZero(1);

 /* Read 100 scans of ADC data */
 tbkRdNFore(data, 100);

 /* Reset the trigger to prevent a buffer overrun */
 tbkSetTrig(TtsSoftware, 1, 0, 0);

 /* Configure and Perform Thermocouple Linearization with block
averaging */
 tbkTCSetup(11, 2, 8, TbkTypeJ, 1, 0);
 tbkTCConvert(data, 100, temp, 8);

 /* The converted temperatures can now be printed to the screen */
 sprintf(tempstr,"\r\nThermocouple temperatures: Channels 0 through
7\r\n\r\n"); strcat(response,tempstr);

 for (i=0 ; i<8 ; i++) {
 sprintf(tempstr,"%8.1f ", (float)temp[i] / 10.0);
 strcat(response,tempstr);
 }
 sprintf(tempstr,"\r\n");
 strcat(response,tempstr);

 SendDlgItemMessage(myDlg, 101, WM_SETTEXT, 0, (LONG)(LPSTR)response);
 EmptyMessageQueue(myDlg);
}

TempBook User’s Manual Standard API Programming of the TempBook with C 6-17

Command Summary, C Language (Standard API)

Command Description
Initialization, Communication and Error Handling:
tbkInit (uint lptPort, uchar lptIntr) Establish communication with the TempBook at the specified LPT

port and interrupt
tbkSelectPort (uint lptPort) Select an initialized TempBook as the current TempBook
tbkClose (void) End communication with the TempBook
tbkSetErrHandler (tbkErrorHandlerFPT
tbkErrHandler)

Specify a user-defined routine to call when error occurs

tbkDefaultHandler (int tbkErrnum) Default error handling routine
tbkGetProtocol (int *protocol) Get the current parallel port communication protocol
tbkSetProtocol (int protocol) Set the parallel port communication protocol
Separate Scan Sequence, Pacer Clock and Trigger Commands:
tbkSoftTrig (void) Issue a software trigger to the TempBook
tbkSetFreq (float freq) Set the pacer clock frequency
tbkGetFreq (float _far *freq) Read the pacer clock frequency
tbkSetClk (uint ctr1, uint ctr2) Set the pacer clock frequency divider registers
tbkSetMode (uchar di_se, uchar polarity) Specify input signal type (single-ended or differential)
tbkSetMux (uint startChan, uint endChan, uchar
gain)

Setup the scan sequencer for a range of channels at the same
gain

tbkGetScan (uint *chans, uchar *gains, uchar
*polarity, uint *count)

Read the scan sequencer contents

Digital I/O and Counter/Timer Functions:
tbkSetScan (uint *chans, uchar *gains, uchar
*polarity, uint count)

Setup the scan sequencer with specific channels, gains, and
polarities

tbkSetTrig (uchar trigger, uchar oneShot, uchar
ctr0mode, uchar pacerMode)

Set the trigger source for analog data acquisition

Separate Data Read and Background Transfer Commands:
tbkRdFore (uint _far *sample) Read a single ADC sample in the foreground and increment the

scan sequencer
tbkRdNFore (uint _far *buf, uint count) Read multiple scans in the foreground
tbkRdNBack (uint _far *buf, uint count, uchar
cycle, uchar updateSingle)

Read multiple scans in the background using interrupts

tbkGetBackStat (uchar _far *active, uint long
_far *count)

Determine is a background transfer is still in progress

tbkStopBack (void) Stop the background transfer
Data Read Commands with Combined Scan Sequencer, Pacer Clock and Trigger Setup and Thermocouple

Linearization:
tbkRd (uint chan, uint *sample, uchar gain) Read a single sample from the specified channel
tbkRdN (uint chan, uint *buf, uint count, uchar
trigger, uchar oneShot, float uchar gain)

Read multiple samples from the specified channel

tbkRdScan (uint startChan, uint endChan, uint
*buf, uchar gain)

Read a single sample from the specified range of channels

tbkRdScanN (uint startChan, uint endChan, uint
*buf, uint count, uchar trigger, uchar oneShot,
float freq, uchar gain)

Read multiple samples from the specified range of channels

tbkRdTemp (uint chan, uint tcType, int temp) Read the thermocouple temperature once from the specified
channel

tbkRdTempN (uint chan, uint tcType, uint count,
int *temp, uint *buf, float freq, uint avg)

Read the thermocouple temperature from the specified channel
multiple times with optional averaging

tbkRdTempScan (uint startChan, uint endChan, uint
tcType, int temp)

Read the thermocouple temperature once from each channel in a
range

tbkRdTempScanN (uint startChan, uint endChan,
uint tcType, uint count, int *temp, uint *buf,
float freq, uint avg)

Read the thermocouple temperature from each channel in a range
multiple times using optional averaging

Thermocouple Linearization Commands:
tbkTCSetup (uint nscan, uint cjcPosition, uint
ntc, uint tcType, uchar bipolar, uint avg)

Specify scan information used by tbkTCConvert

tbkTCConvert (uint _far *counts, uint scans, int
_far *temp, uint ntemp)

Perform thermocouple linearization on scan data

tbkTCSetupConvert (uint nscan, uint cjcPosition,
uint ntc, uint tcType, uchar bipolar, uint avg,
uint _far *counts, uint scans, int *far *temp,
uint ntemp)

Combined tbkTCSetup and tbkTCConvert

tbkTCAutoZero (uint zero) Tell the thermocouple linearization functions that auto zeroing will
be used

6-18 Standard API Programming of the TempBook with C TempBook User’s Manual

Software Calibration and Zero Compensation Commands:
tbkReadCalFile (char *calfile) Read the calibration constants text file
tbkCalSetup (uint nscan, uint readingsPos, uint
nReadings, uint chanType, uint chanGain, uint
bipolar, uint noOffset)

Specify scan information used by tbkCalConvert

tbkCalConvert (uint *counts, uint scans) Perform software calibration on scan data
tbkCalSetupConvert (uint nscan, uint readingsPos,
uint nReadings, uint chanType, uint chanGain,
uint bipolar, uint noOffset, uint *counts, uint
scans)

Combined tbkCalSetup and tbkCalConvert

tbkZeroSetup (uint nscan, uint zeroPos, uint
readingsPos, uint nReadings)

Specify scan information used by tbkZeroConvert function

tbkZeroConvert (uint *counts, uint scans) Perform zero compensation on scan data
tbkZeroSetupConvert (uint nscan, uint zeroPos,
uint readingsPos, uint nReadings, uint *counts,
uint scans)

Combined tbkZeroSetup and tbkZeroConvert

tbkConfCntr0 (uchar config) Set the operating mode of the counter/timer
tbkWtCntr0 (uint cntr0) Write a value to the counter/timer count down register
tbkRdCntr0 (uint _far *cntr0, uchar mode) Read the counter/timer hold register
tbkRdBit (uchar bitNum, uchar *bitVal) Read a specific digital input bit
tbkRdByte (uchar *byteVal) Read all digital inputs
tbkWtBit (uchar bitNum, uchar bitVal) Write to a specific digital output bit
tbkWtByte (uchar byteVal) Write to all digital outputs
Pretrigger Operation Commands:
tbkSetTrigPreT (uchar source, uint channels, uint
level, uint preCount, uint postCount)

Setup the trigger source and level for a pretrigger operation

tbkRdNForePreT (uint _far *buf, uint count, uint
_far *retcount, uchar _far active)

Read multiple scans for a pretrigger operation in the foreground

tbkRdNForePreTWait (uint _far *buf, uint count,
uint _far *retcount)

Read multiple scans for a pretrigger operation in the foreground
continuing until the trigger event occurs

tbkRdNBackPreT (uint _far *buf, uint count, uchar
cycle)

Read multiple scans for a pretrigger operation in the background

Software Calibration and Zero Compensation 7

TempBook User’s Manual Software Calibration and Zero Compensation 7-1

Note: The enhanced API commands do not work exactly like the standard API commands used in this chapter.

This section describes how to use the TempBook's software calibration and zero compensation functions to
correct for gain and offset errors. To use the calibration constants shipped with the board, DaqView users
should follow the instructions given on the calibration document containing these constants. The program
will automatically use these constants.

Programmers wishing to use the TempBook’s thermocouple linearization functions with auto-zero
compensation (rather than calling the zero compensation functions manually) should refer to the
Thermocouple Linearization chapter of this manual.

Both software calibration and zero compensation increase the accuracy of the TempBook and its expansion
cards by correcting for gain and offset errors. For example, when using a TempBook with software
calibration, accuracy better than 1°C can be achieved. The calibration operation removes static gain and
offset errors that are inherent in the hardware. This operation uses calibration constants, usually measured
at the factory, to adjust for gain and optionally offset errors. The calibration constants do not change during
the execution of a program but are different for each card and programmable gain setting.

Zero compensation removes offset errors while a program is running. This is useful in systems where the
offset of a channel may change due to temperature changes, long-term drift or hardware calibration changes.
By reading a shorted channel on the same card at the same gain as the desired channel, the offset can be
removed at run-time. Note: The TempBook has channel 18 permanently shorted for performing zero
compensation.

Software Calibration
Software calibration functions are designed to adjust TempBook readings to compensate for gain and offset
errors. Calibration constants are calculated at the factory by measuring the gain and offset errors of a card
at each programmable gain setting. These constants are stored in a calibration text file which can be read
by a program at runtime. This allows new boards to be configured for calibration by updating this
calibration file rather than re-compiling the program.

The calibration process is divided up into three steps:
• Initialization consists of reading the calibration file.
• Setup describes the characteristics of the data to be calibrated.
• Conversion does the actual calibration of the data.

All of the functions prototypes, return error codes and definitions are located in the TempBook.H header
file (C language) or similar header file (other languages).

Initializing the Calibration Constants
Each TempBook is shipped with a disk containing a calibration constants file. The file is named
serial_no.cal where serial _no is the serial number of the TempBook for which the constants were
generated. This file should be copied into the directory from which the user’s program will be run. For
convenience, this file can be renamed tempbook.cal which is the default calibration filename.

The initialization function for reading in the calibration constants from the calibration text file is
tbkReadCalFile. The C language version of tbkReadCalFile is similar to that of other languages
and operates as follows:

int tbkReadCalFile(char_*calfile)
char_*calfile calfile contains the path (optional) and filename of the calibration file. If calfile is NULL

or empty (""), the default calibration file TempBook.CAL will be read.

This function, which is usually called once at the beginning of a program, will read all the calibration
constants from the specified file. If calibration constants for a specific channel number and gain setting are
not contained in the file, ideal calibration constants will be used—essentially performing no calibration for
that channel. If an error occurs while trying to open the calibration file, ideal calibration constants will be
used for all channels and a non-zero error code will be returned by the tbkReadCalFile function.

7-2 Software Calibration and Zero Compensation TempBook User’s Manual

Calibration Setup and Conversion
Once the cal constants have been read from the cal file, they can be used by the tbkCalSetup and
tbkCalConvert functions. The tbkCalSetup function will configure the order and type of data to be
calibrated. This function requires all data to be calibrated to be from consecutive channels configured for
the same gain, polarity and channel type. The calibration can be configured to use only the gain calibration
constant and not the offset constant. This allows the offset to be removed at runtime using the zero
compensation functions described later in this chapter.

int
tbkCalSetup ()

uint nscan The number of readings in a single scan.
uint readingsPos The position of the readings to be calibrated within the scan.
uint nReadings The number of readings to calibrate.
uint chanType The type of channel from which the readings to be calibrated are read. This

should be set to 1 when calibrating a CJC channel and 0 when reading any
other channel.

uint chanGain The gain setting of the channels to be calibrated.
uint bipolar Non-zero if the TempBook is configured for bipolar readings.
uint noOffset If non-zero, the offset cal constant will not be used to calibrate the readings.

The tbkCalConvert function performs the actual calibration of one or more scans according to the
previously called tbkCalSetup function. This function will modify the array of data passed to it.

int
tbkCalConvert ()

uint *counts The raw data from one or more scans.
uint scans The number of scans of raw data in the counts array.

For convenience, both the setup and convert steps can be performed with one call to
tbkCalSetupConvert. This is useful when the calibration needs to be performed multiple times
because data was read from channels at different gains.

int
tbkCalSetupConvert ()

uint nscan The number of readings in a single scan.
uint readingsPos The position of the readings to be calibrated within the scan.
uint nReadings The number of readings to calibrate.
uint chanType The type of channel/board from which the readings to be calibrated are read.

This should be set to 1 when calibrating a CJC channel and 0 when reading
any other channel.

uint chanGain The gain setting of the channels to be calibrated.
uint bipolar Non-zero if the TempBook is configured for bipolar readings.
uint noOffset If non-zero, the offset cal constant will not be used to calibrate the readings.
uint *counts The raw data from one or more scans.
uint scans The number of scans of raw data in the counts array.

Calibration Example
In this example, several TempBook channels will be read and calibrated. This example assumes that the
calibration file has been created according to the initializing calibration constants section of this chapter.

Although all of the channels in this example are read at the same gain, the same principles apply to
calibration of channel readings at different gains. In that situation, channels to be read are grouped by gain
within the scan sequence. Then, tbkCalSetup and tbkCalConvert (or tbkCalSetupConvert)
would be called once for each group of channels at a particular gain.

void main(void)
{

unsigned sample, buf[10], data[8];
int i, scan, chan;

printf(“/nAdcex4.c/n”);

/* Set error handler and initialize TempBook*/
tbkSetErrHandler(myhandler);
tbkInit(LPT1, 7);

TempBook User’s Manual Software Calibration and Zero Compensation 7-3

/*Read the calibration constants from the calibration constant text file
assuming the default name ‘tempbook.cal’*/

tbkReadCalFile(“”);

/* Set the default operating mode to differential, bipolar */
tbkSetMode(1,1);

/* Get 1 sample from channels 0 through 7 at unity gain */
tbkRdScan(0, 7, data, TgainX1);

/* Print the uncalibrated samples using a 12-bit format */
printf(“/nUncalibrated Results of tbkRdScan:/n”);
for(i=0; i<8; i++)

printf(“Channel: %2d Data: %4d/n”, i, data[i]>4);

/* Setup and perform offset and gain software calibration of data */
tbkCalSetup(8, /* 8 readings within a scan */

0, /* First reading to be cal’d at position 0 */
8, /* Calibrate 8 readings per scan */
0, /* Channel type is 0 for non-CJC */
TgainX1 /* Reading taken at X1 gain */
1, /* Readings are bipolar */
0); /* Perform zero as well as gain calibration */

tbkCalConvert (data, /*Pointer to array of readings */
1); /* 1 scan in that array */

/* Print the calibrated samples using a 12-bit format */
printf(“/nCalibrated Results of tbkRdScan:/n”);
for(i=0; i<8; i++)

printf(“Channel: %2d Data: %4d/n”, i, data[i]>4);

/* Close and exit */
tbkClose
}

Zero Compensation
The zero compensation functions require a shorted channel to be sampled at the same gain as the channels
to be compensated.

The tbkZeroSetup function configures the location of the shorted channel and the channels to be zeroed
within a scan, the size of the scan and the number of readings to zero. This function does not do the
conversion. A non-zero return value indicates an invalid parameter error.

int tbkZeroSetup ()
uint nscan The number of readings in a single scan.
uint zeroPosition The position of the zero reading within the scan.
uint
readingsPosition

The position of the readings to be zeroed within the scan.

uint nReadings The number of readings per scan to be zero compensate.

The tbkZeroConvert function compensates one or more scans according the previously called
tbkZeroSetup function. This function will modify the array of data passed to it.

int tbkZeroConvert ()
uint *counts The raw data from one or more scans.
uint scans The number of scans of raw data in the counts array.

For convenience, both the setup and convert steps can be performed with one call to
tbkZeroSetupConvert. This is useful when the zero compensation needs to be performed multiple
times because data was read from channels at different gains.

7-4 Software Calibration and Zero Compensation TempBook User’s Manual

int tbkZeroSetupConvert ()
uint nscan The number of readings in a single scan.
uint zeroPosition The position of the zero reading within the scan.
uint
readingsPosition

The position of the readings to be zeroed.

uint nReadings The number of readings per scan to be zero compensated.
uint *counts The raw data from one or more scans.
uint scans The number of scans of raw data in the counts array.

Zero Compensation Example
In this example, several TempBook channels will be read and zero compensated. Although all of the
channels in this example are read at the same gain, the same principles apply to calibration of channel
readings at different gains. In that situation, channels to be read are grouped by gain within the scan
sequence. Also within the scan sequence, the TempBook’s internal shorted channel would be read once at
each gain used for channel measurement. Then, tbkZeroSetup and tbkZeroConvert (or
tbkZeroSetupConvert) would be called once for each group of channels at a particular gain making
sure that the corresponding shorted channel reading for that gain is passed.

void main(void)
{
unsigned int data[9], chans[9], i;
unsigned char gains[9], polarities[9];
printf(“/nAdcex5.c/n”);

/* Initialize the channels, gains, and polarities arrays*/
chans[0] = 18; /* Shorted channel */
gains[0] = TgainX1 /* Same gain as analog input channels */
polarities[0] = 1; /* Bipolar */
for(i=0; i<8; i++)
{
chans[i] = i-1; /* Analog input channels 0 - 7 */
gains[i] = TgainX1 /* Unity gain */
polarities[i] = 1; /* Bipolar */
}

/*Set error handler and initialize TempBook */
tbkSetErrHandler(myhandler);
tbkInit(LPT1, 7);

/* Set the default operating mode to differential, bipolar */
tbkSetMode(1,1);

/* Set the scan sequencer */
tbkSetScan(chans, gains, polarities, 9);

/* Configure trigger source and issue software trigger */
tbkSetTrig(TtsSoftware, 1, 0, 0);
tbkSoftTrig();

/* Read the ADC data */
tbkRdNFore(data, 1);

/* Print the uncompensated samples using a 12-bit format.*/
printf(“/nResults of tbkRdNFore before zero compensation:/n”);
for(i=0; i<8; i++)

printf(“Channel: %2d Data: %4d/n”, i, data[i]>4);

/* Setup and perform zero compensation of the data */
tbkZeroSetup(9, /* 9 readings within a scan */

0, /* Shorted channel at position 0 */
1, /* First reading to be compensated at position 1 */
8, /* Compensate 8 readings per scan */

tbkZeroConvert(data, /*Pointer to array of readings */
1); /* 1 scan in that array */

TempBook User’s Manual Software Calibration and Zero Compensation 7-5

/* Print the compensated samples using a 12-bit format */
printf(“/nResults of tbkRdNFore after zero compensation:/n”);
for(i=0; i<8; i++)

printf(“Channel: %2d Data: %4d/n”, i, data[i]>4);

/* Close and exit */
tbkClose
}

Automatic Zero Compensation
The tbkTCAutoZero function will configure the thermocouple linearization functions to automatically
perform zero compensation. This is the easiest way to use zero compensation when making thermocouple
measurements. When enabled, the thermocouple conversion functions will require a CJC zero reading and
a TC zero reading to precede the actual CJC and TC reading.

int tbkTCAutoZero ()
uint zero If non-zero, will enable auto zero compensation in the tbkTC... functions

Note: See the thermocouple linearization section for a description and example of automatic zero
compensation for thermocouple measurement.

7-6 Software Calibration and Zero Compensation TempBook User’s Manual

- Notesc

Thermocouple Measurement 8

TempBook User’s Manual Thermocouple Measurement 8-1

Note: The enhanced API commands do not work exactly like the standard API commands used in this chapter.

The TempBook software includes two groups of functions for obtaining thermocouple temperatures:
• Low-level data conversion functions provide thermocouple linearization for previously acquired ADC

data. Functions include: tbkTCSetup, tbkTCConvert, tbkTCSetupConvert,
tbkTCAutoZero.

• High-level thermocouple measurement functions provide combined scan sequencer setup, triggering,
data collection, and linearization. Functions include: tbkRdTemp, tbkRdTempN,
tbkRdTempScan, tbkRdTempScanN.

Both of theses function groups support types J, K, T, E, N28, N14, S, R and B thermocouples. The
TempBook accepts thermocouple attachment on differential input channels 0 through 7. In addition, the
TempBook provides a cold-junction compensation circuit on channel 16 and a permanently shorted input on
channel 18 for performing zero compensation.

Two software techniques can be used to increase the measurement accuracy: software calibration and zero
compensation. Software calibration uses gain and offset calibration constants, unique to each unit, to
compensate for inherent errors. Zero compensation is a method by which offset voltages in the input
amplifier stages can be removed at run-time. This is done by measuring a shorted channel at the same gain
as the signal measurement to find the offset, and subtracting this from the actual reading. Both of these
methods are described in the Zero Compensation and Calibration chapter.

The thermocouple linearization functions have a special auto-zero compensation feature that will perform
zero compensation on the raw thermocouple data before linearizing. This auto-zero feature is enabled by
default but can be disabled using the tbkTCAutoZero function.

Low-Level Thermocouple Data Conversion Functions
The low-level thermocouple linearization functions are designed to convert ADC data which was collected
in a specific scan sequence format.

• When not using the auto-zero feature, the scan sequence should consist of a CJC reading followed by
thermocouple readings. If different thermocouple types are being read, the readings should be
grouped by type with a CJC reading preceding each group. The thermocouple linearization functions
must then be called once for each thermocouple type.

• When using the auto-zero feature, the scan sequence should consist of 2 shorted channel reading
followed by the CJC and thermocouple readings. The first shorted channel reading should be taken at
the CJC gain and the second at the thermocouple gain. If different thermocouple types are being read,
the reading should be grouped by thermocouple type with two shorted channel and one CJC readings
preceding each group. The thermocouple linearization functions must then be called once for each
thermocouple type.

The scan is not restricted to thermocouple measurements. The scan may include other signals such as
voltage or digital input. The linearization functions will ignore this other data within the scan group.

The gain settings for the CJC and thermocouple types depend on the bipolar/unipolar setting of the
TempBook as specified in the table below. Note: Unipolar operations are not recommended for
thermocouple measurement unless the temperatures to be measured are guaranteed to be greater than the
TempBook temperature.

TempBook Gain Codes
Type Unipolar Gain Code Unipolar Gain Bipolar Gain Code Bipolar Gain
CJC TbkUniCJC 50 TbkBiCJC 100
J TbkUniTypeJ 100 TbkBiTypeJ 200
K TbkUniTypeK 100 TbkBiTypeK 200
T TbkUniTypeT 200 TbkBiTypeT 200
E TbkUniTypeE 50 TbkBiTypeE 100
N28 TbkUniTypeN28 100 TbkBiTypeN28 200
N14 TbkUniTypeN14 100 TbkBiTypeN14 200
S TbkUniTypeS 200 TbkBiTypeS 200
R TbkUniTypeR 200 TbkBiTypeR 200
B TbkUniTypeB 200 TbkBiTypeB 200

8-2 Thermocouple Measurement TempBook User’s Manual

The low-level temperature conversion functions
take data from one or more scans from the
TempBook. They examine the CJC and
thermocouple readings within that scan and,
after optional averaging, convert them to
temperatures which are stored as output. For
example, assume the readings in the table at right.

This shows that the first two readings of each scan are a CJC zero reading and a TC zero reading. The third
reading is from the CJC, and the remaining three readings are from three type J thermocouples. If the auto-
zero feature is not used, the first two readings will be ignored. Otherwise, they
will be used to remove any offset errors in the CJC and thermocouple reading
before proceeding. When not using averaging, the CJC readings are combined
with the thermocouple readings to produce one temperature result for each
thermocouple reading. Reducing the 24 original readings to 12 temperatures
(see table at right).

The conversion process is divided into two steps: setup and conversion. The setup step describes the
characteristics of the temperature measurement, and the conversion step actually converts the data from raw
readings to temperatures. All of the functions return error codes which are defined in TempBook.H which
includes the function prototypes and definitions of the thermocouple type codes.

The setup function is tbkTCSetup. The C-language version of tbkTCSetup is very similar to that of
the other programming languages and is described below. Note: uint is short for unsigned int, and
uchar is short for unsigned char. Further details in Command Reference chapter.

tbkTCSetup(uint nscan, uint cjcPosition, uint ntc, uint tcType, uchar
bipolar, uint avg)

uint nscan The number of readings in a single scan of TempBook data. The tbkTC
functions can convert several consecutive scans worth of data in a single
invocation.

Valid range: 2 to 512.
uint cjcPosition The position of the actual cold-junction compensation circuit (CJC) reading within

each scan (not the CJC zero reading, if any). The first reading of the scan is
position 0, and the last reading is position nscan-1. Each scan of temperature
data must include a reading of the CJC. The CJC readings must be taken with
the appropriate unipolar or bipolar CJC gain setting.

Valid range: 0 to nscan-2 with no zero compensation; 2 to nscan-2 with zero
compensation.

uint ntc The number of thermocouple readings that are to be converted to temperature
values. The thermocouple signal readings must immediately follow the CJC
reading in the scan data. The first thermocouple signal is at scan position
cjcPosition+1, the next is at cjcPosition+2, and so on.

Valid range: 1 to nscan-1-cjcPosition.
uint tcType The type of thermocouples that generated the measurements: J, K, T, E, N28,

N14, S, R, or B.
Valid range: One of the predefined values: TbkTCTypeJ, TbkTCTypeK,
TbkTCTypeT, TbkTCTypeE, TbkTCTypeN28, TbkTCTypeN14,
TbkTCTypeS, TbkTCTypeR or TbkTCTypeB.

uchar bipolar Non-zero if the TempBook is configured for bipolar readings.
uint avg The type of averaging to be performed.

Valid range: any unsigned integer.
Note: Since the thermocouple voltage may be small compared to the ambient

electrical noise, averaging may sometimes be necessary to yield a steady
temperature output.

0 specifies block averaging in which all of the scans are averaged together to
compute a single temperature measurement for each of the ntemp
thermocouples.

1 specifies no averaging. Each scan's readings are converted into ntemp
measured temperatures for a total of scans*ntemp results.

2 or more specifies moving average of the specified number of scans. Each
scan's readings are averaged with the avg-1 preceding scans' readings before
conversion. The first avg-1 scans are averaged with all of the preceding scans
because they do not have enough preceding scans. For example, if avg is 3,
then the results from the first scan are not averaged at all, the results from the
second scan are averaged with the first scan, the results from the third and
subsequent scans are averaged with the preceding two scans as shown in the
next table.

Scan Reading
0 1 2 3 4 5

1 CJC Zero J Zero CJC J1a J1b J1c
2 CJC Zero J Zero CJC J2a J2b J2c
3 CJC Zero J Zero CJC J3a J3b J3c
4 CJC Zero J Zero CJC J4a J4b J4c

Scan Result
0 1 2

1 J1a J1b J1c
2 J2a J2b J2c
3 J3a J3b J3c
4 J4a J4b J4c

TempBook User’s Manual Thermocouple Measurement 8-3

Scan Readings from Channel Results from Channel
0 1 0 1

1 1A 2A 1A 2A
2 1B 2B (1A+1B)/2 (2A+2B)/2
3 1C 2C (1A+1B+1C)/3 (2A+2B+2C)/3
4 1D 2D (1B+1C+1D)/3 (2B+2C+2D)/3
5 1E 2E (1C+1D+1E)/3 (2C+2D+2E)/3
6 1F 2F (1D+1E+1F)/3 (2D+2E+2F)/3

The conversion function is tbkTCConvert: (Note: Further details in Command Reference chapter.)

tbkTCConvert(uint *counts, uint scans, int *temp, uint ntemp)
uint *counts A array of one or more scans of raw data as received from the TempBook. The ADC

data bits are in the 12 most significant bits of the 16-bit integers.
Valid range: Each raw data item may be any 16-bit value.

uint scans The number of scans of data in counts.
Valid range: 1 to 32768/nscan (counts is limited to 64 Kbytes)

int *temp The converted temperature results. The integer values are 10 times the temperatures
in degrees C; e.g., 50°C would be represented as 500 and -10°C would be -100.

Valid range: Results range from -2000 (-200°C) to +13720 (+1372°C) depending on the
thermocouple type.

uint ntemp The number of entries in the temp array. This is checked by the functions to avoid
writing past the end of the temp array.

Valid range: If avg is 0, then ntc or greater.
 If avg is non-zero, then scans * ntc or greater.

For convenience both setup and conversion can be performed at once by tbkTCSetupConvert: (Note:
Further details in Command Reference chapter.)

tbkTCSetupConvert(uint nscan, uint cjcPosition, uint ntc, uint tcType, uchar
bipolar, uint avg, uint *counts, uint scans, int *temp, uint ntemp)

The auto-zero feature can be enabled disabled using the tbkTCAutoZero function: (Note: Further details
in Command Reference chapter.)

tbkTCAutoZero (uint zero)
uint zero Non-zero to enable auto-zeroing;

zero (0) to disable auto-zeroing.

Note: see the tempex2 example programs in the individual language support chapters fore examples of
using these functions.

High-Level Thermocouple Measurement Functions
The high-level thermocouple measurement functions are designed to provide combined scan sequencer
setup, triggering, data collection, and linearization. There are 4 functions in this group:

tbkRdTemp Read a single thermocouple channel once.
tbkRdTempN Read a single thermocouple channel multiple times.
tbkRdTempScan Read a range of thermocouple channels once.
tbkRdTempScanN Read a range of thermocouple channels multiple times.

Note: see tempex1 sample programs using these functions in the individual language-support chapters.

Single-Channel Measurement (tbkRdTemp)

The tbkRdTemp function uses software triggering to immediately acquire one sample from the specified
analog input channel. This function also collects CJC and shorted channel readings for linearization and
zero compensation. The CJC and thermocouple readings are then zero compensated and the thermocouple
reading is linearized. The converted temperature is placed in a variable supplied by the calling program.
(Note: Further details in Command Reference chapter.)

tbkRdTemp (uint chan, uint tcType, int *temp)
uint chan The channel number to which the thermocouple is attached.
uint tcType The type of thermocouple attached.
int*temp A variable in which to store the measured temperature

8-4 Thermocouple Measurement TempBook User’s Manual

Multiple Measurements from a Single Channel (tbkRdTempN)

The tbkRdTempN function uses pacer clock triggering to acquire multiple samples from the specified
analog input channel and CJC and shorted channel readings for linearization and zero compensation. The
CJC and thermocouple readings are zero compensated and the thermocouple readings are linearized. The
converted temperatures are placed in an array supplied by the calling program. If block averaging is used, a
single temperature is returned; otherwise, a number of temperatures equal to the number of scans specified
are returned. (Note: Further details in Command Reference chapter.)

tbkRdTempN(uint chan, uchar tcType, uint count, int * temp, uint * buf,
float freq, uint avg)

uint chan The channel number to which the thermocouple is attached.
uint tcType The type of thermocouple attached.
uint count The number of scans to read.
int *temp A variable in which to store the measured temperature.
uint* buf An array for the temporary storage of raw scan data (must be at least 4*count in length).
float freq The scan interval frequency.
uint avg Type of averaging to be used.

0 - block averaging
1 - no averaging
2 - moving averaging

Multiple-Channel Measurement (tbkRdTempScan)

The tbkRdTempScan function uses software triggering to immediately acquire one sample from the
specified range of analog input channels. All of these channels must be of the same thermocouple type,.
This function also collects CJC and shorted channel readings for linearization and zero compensation. The
CJC and thermocouple readings are then zero compensated and the thermocouple readings are linearized.
The converted temperatures are then placed in an array supplied by the calling program. (Note: Further
details in Command Reference chapter.)

tbkRdTempScan(uint startChan, uint endChan, uchar tcType, int * temp)
uint startchan The starting channel number of the range of thermocouple channels to read.
uint endChan The ending channel number of the range of thermocouple channels to read.
uint tcType The type of thermocouple attached.
int *temp An array in which to store the measured temperatures (must be at least endChan -

startChan + 1 in length).

Multiple Measurements from Multiple Channels (tbkRdTempScanN)

The tbkRdTempScanN function uses pacer clock triggering to acquire multiple samples from the
specified range of analog input channels. All of these channels must be of the same thermocouple type.
This function also collects CJC and shorted channel readings for linearization and zero compensation. The
CJC and thermocouple readings are then zero compensated and the thermocouple readings are linearized.
The converted temperatures are placed in an array supplied by the calling program. If block averaging is
specified, then a single temperature is returned for each channel; otherwise, a number of temperatures equal
to the number of scans time the number of channels specified are returned. (Note: Further details in
Command Reference chapter.)

tbkRdTempScanN(uint startChan, uint endChan, uchar tcType, uint count, int *
temp, uint * buf, float freq, uint avg)

uint startchan The starting channel number of the range of thermocouple channels to read.
uint endChan The ending channel number of the range of thermocouple channels to read.
uint tcType The type of thermocouple attached.
uint count The number of scans to read.
int *temp A variable in which to store the measured temperature.
uint *buf An array for the temporary storage of raw scan data (must be at least [endChan -

startChan + 4] *count in length).
float freq The scan interval frequency.
uint avg Type of averaging to be used.

0 - block averaging
1 - no averaging
2 - moving averaging

tbkCommand Reference (Standard API) 9

TempBook User’s Manual tbkCommand Reference (Standard API) 9-1

Overview

The first part of this chapter describes the TempBook/66 driver commands (this is the Standard API and is
not to be confused with the Enhanced API). The first table lists the commands by their function types as
defined in the driver header files. Then, the prototype commands are described in alphabetical order as
indexed below. At the end of the chapter (beginning on page 9-32), several reference tables define
parameters for: A/D Channel Descriptions, A/D Gain Definitions, A/D Trigger Source Definitions, Pre-
Trigger Functions, Thermocouple Types, and the API Error Codes.

These TempBook software commands are described on the following pages:

Function Description Page

High- and Low-Level A/D Functions
tbkConfCntr0 Configure the counter 0 mode 9-5
tbkGetBackStat Read the status of a background A/D transfer 9-6
tbkGetFreq Read the current pacer clock frequency 9-6
tbkGetScan Read the current scan configuration 9-7
tbkRd Configure an A/D acquisition and read one sample from a channel 9-8
tbkRdCntr0 Read the current value of the counter 0 9-9
tbkRdFore Read a single A/D sample and increment the channel mux 9-10
tbkRdN Configure an A/D acquisition and read multiple scans from a channel 9-10
tbkRdNBack Read count A/D scans in the background using interrupts 9-11
tbkRdNBackPreT Reads multiple A/D scans, initiated by tbkAdcSetrigPreT command, in

the background
9-12

tbkRdNFore Read count A/D samples in the foreground (polled mode) 9-12
tbkRdNForePreT Read multiple A/D scans, initiated by tbkAdcSetTrigPretT command,

in the foreground
9-13

tbkRdNForePreTWait Read multiple A/D scans, initiated by tbkAdcSetTrigPretT command,
in the foreground without returning until the acquisition completes

9-14

tbkRdScan Configure an A/D acquisition and read one scan 9-14
tbkRdScanN Configure an A/D acquisition and read multiple scans 9-15
tbkRdTemp Take a single thermocouple reading from the given analog input channel 9-15
tbkRdTempN Take multiple thermocouple readings from the given analog input channel 9-16
tbkSetMode Configure gain amp single-/differential and polarity modes 9-21
tbkRdTempScan Take thermocouple readings from analog input channels 'startChan'

through 'endChan"
9-17

tbkRdTempScanN Take multiple thermocouple readings from analog input channels
'startChan' through 'endChan"

9-18

tbkSetClk Set the pacer clock counters 9-20
tbkSetFreq Configure the pacer clock frequency in Hz 9-21
tbkSetMux Configure a scan specifying start and end channels 9-22
tbkSetScan Configure up to 512 channels making up an A/D or HS digital input scan 9-24
tbkSetTrig Configure an A/D trigger 9-25
tbkSetTrigPreT Set the trigger of analog level triggering & initiates the collection of pre-

trigger data acquisition
9-26

tbkSoftTrig Send a software trigger command to the TempBook 9-27
tbkStopBack Stop a background A/D transfer 9-27
tbkWtCntr0 Write a value to counter 0 9-30

Digital I/O Functions
tbkRdBit Read a bit on a digital input port 9-9
tbkRdByte Read a byte from a digital input port 9-9
tbkWtBit Program a bit on a digital output port 9-29
tbkWtByte Output a byte to a digital output port 9-30

Thermocouple Functions
tbkTCConvert Convert raw A/D readings to temperature readings 9-28
tbkTCSetup Set up parameters for subsequent temperature conversions 9-28
tbkTCSetupConvert Set up and convert raw A/D readings into temperature readings 9-29

9-2 tbkCommand Reference (Standard API) TempBook User’s Manual

Software Calibration and Zero Compensation Functions
tbkTCAutoZero Configure the thermocouple linearization functions to automatically perform

zero compensation
9-27

tbkCalConvert Perform the actual calibration of one or more scans 9-3
tbkCalSetup Configure the order and type of data to be calibrated 9-3
tbkCalSetupConvert Perform both the setup and convert steps with one call 9-4
tbkReadCalFile Read all the calibration constants from the specified file 9-19
tbkTCConvert Performs zero compensation on one or more scans 9-28
tbkTCSetup Configure data for zero compensation 9-28
tbkTCSetupConvert Perform both the setup and convert steps with one call 9-29

General Functions
tbkClose End communication with the TempBook 9-4
tbkGetProtocol Returns the current parallel port communications protocol 9-7
tbkInit Initialize a single TempBook 9-8
tbkSelectPort Select an initialized TempBook/66 as the current TempBook 9-19
tbkSetErrHandler Sets the handler that will be executed upon an error condition 9-20
tbkSetProtocol Specifies the type of parallel-port implementation and protocol available on

the computer
9-23

tbkDefaultHandler 9-6

Commands in Alphabetical Order
The following pages give the details for each TempBook/66 command listed in alphabetical order. Each
section starts with a table that summarizes the main features of the command. An explanation follows (and
in some cases a programming example or related information).

TempBook User’s Manual tbkCommand Reference (Standard API) 9-3

tbkCalConvert
DLL Function tbkCalConvert(uint *counts, uint scans);
C tbkCalConvert(unsigned *counts, unsigned scans);
QuickBASIC BtbkCalConvert%(counts%, ByVal scans%)
Visual Basic VBtbkCalConvert% (counts%(), ByVal scans%)
Turbo Pascal ftbkCalConvert(counts:WordP; scans:word):integer;
Parameters
uint *counts The raw data from one or more scans.
uint scans The number of scans of raw data in the counts array.
Returns TerrZCInvParam - Invalid parameter value

TerrNoError - No error
See Also tbkReadCalFile, tbkCalSetup, tbkCalSetupConvert
Program References None

The tbkCalConvert function performs the actual calibration of one or more scans according to
the previously called tbkCalSetup function. This function will modify the array of data passed
to it. See the Software Calibration and Zero Compensation chapter for a complete description of
calibration.

tbkCalSetup
DLL Function tbkCalSetup(uint nscan, uint readingsPos, uint nReadings, uint chanType,

uint chanGain, uint bipolar, uint noOffset);
C tbkCalSetup(unsigned nscan, unsigned readingsPos, unsigned nReadings,

unsigned chanType, unsigned chanGain, unsigned bipolar, unsigned noOffset);
QuickBASIC BtbkCalSetup%(ByVal nscan%, ByVal readingsPos%, ByVal nReadings%, ByVal

chanType%, ByVal chanGain%, ByVal bipolar%, ByVal noOffset%)
Visual Basic VBtbkCalSetup% (ByVal nscan%, ByVal readingsPos%, ByVal nReadings%, ByVal

chanType%, ByVal chanGain%, ByVal bipolar%, ByVal noOffset%)
Turbo Pascal tbkCalSetup(nscan:word;readingsPos:byte;nReadings:byte;chanType:word;chanGai

n:word;:word;noOffset:word):integer;
Parameters
uint nscan The number of readings in a single scan.
uint readingsPos The position of the readings to be calibrated within the scan.
uint nReadings The number of readings to calibrate.
uint chanType The type of channel from which the readings to be calibrated are read. This should be set to 1 when

calibrating a CJC channel and 0 when calibrating any other channel.
uint chanGain The gain setting of the channels to be calibrated.
uint bipolar Non-zero if the readings are bipolar.
uint noOffset If non-zero, the offset cal constant will not be used to calibrate the readings.
Returns TerrZCInvParam - Invalid parameter value

TerrNoError - No error
See Also tbkReadCalFile, tbkCalConvert, tbkCalSetupConvert
Program References None

The tbkCalSetup function will configure the order and type of data to be calibrated. This
function requires all data to be calibrated to be from channels configured for the same gain, polarity
and channel type. The calibration can be configured to only use the gain calibration constant and not
the offset constant. This allows the offset to be removed at runtime using the zero compensation
functions. See the Software Calibration and Zero Compensation chapter for a complete description
of calibration.

9-4 tbkCommand Reference (Standard API) TempBook User’s Manual

tbkCalSetupConvert
DLL Function tbkCalSetupConvert(uint nscan, uint readingsPos, uint nReadings, uint

chanType, uint chanGain, uint bipolar, uint noOffset, uint *counts, uint
scans);

C tbkCalSetupConvert(unsigned nscan, unsigned readingsPos, unsigned nReadings,
unsigned chanType, unsigned chanGain, unsigned bipolar, unsigned noOffset,
unsigned *counts, unsigned scans);

QuickBASIC BtbkCalSetupConvert% (ByVal nscan%, ByVal readingsPos%, ByVal nReadings%,
ByVal chanType%, ByVal chanGain%, ByVal bipolar%, ByVal noOffset%, counts%,
ByVal scans%)

Visual Basic VBtbkCalSetupConvert% (ByVal nscan%, ByVal readingsPos%, ByVal nReadings%,
ByVal chanType%, ByVal chanGain%, ByVal bipolar%, ByVal noOffset%,
counts%(), ByVal scans%)

Turbo Pascal tbkCalSetupConvert(nscan:word;readingsPos:byte;nReadings:byte;
chanType:word;chanGain:word;bipolar:word;
noOffset:word;counts:WordP;scans:word):integer;

Parameters
uint nscan The number of readings in a single scan.
uint readingsPos The position of the readings to be calibrated within the scan.
uint nReadings The number of readings to calibrate.
uint chanType The type of channel from which the readings to be calibrated are read. This should be set to 1 when

calibrating a CJC channel and 0 when calibrating any other channel.
uint chanGain The gain setting of the channels to be calibrated.
uint bipolar Non-zero if the readings are bipolar.
uint noOffset If non-zero, the offset cal constant will not be used to calibrate the readings.
uint *counts The raw data from one or more scans.
uint scans The number of scans of raw data in the counts array.
Returns TerrZCInvParam - Invalid parameter value

TerrNoError - No error
See Also tbkReadCalFile, tbkCalSetup, tbkCalConvert
Program References None

For convenience, both the setup and convert steps can be performed with one call to
tbkCalSetupConvert. This is useful when the calibration needs to be performed multiple times
because data was read at different gains or polarities. See the Software Calibration and Zero
Compensation chapter for a complete description of calibration.

tbkClose
DLL Function int tbkClose(void)
C tbkClose(void);
QuickBASIC BtbkClose% ()
Visual Basic VBtbkClose% ()
Turbo Pascal tbkClose:integer;
Parameters None
Returns TerrNoError - No error
See Also tbkInit
Program References

tbkClose is used to end communications with the TempBook/66. If tbkClose is called,
tbkInit must be called before calling any other function.

TempBook User’s Manual tbkCommand Reference (Standard API) 9-5

tbkConfCntr0
DLL Function int tbkConfCntr0(uchar config);
C tbkConfCntr0(unsigned char config);
QuickBASIC BtbkConfCntr0% (ByVal config%)
Visual Basic VBtbkConfCntr0% (ByVal config%)
Turbo Pascal tbkConfCntr0(config:byte):integer;
Parameters
uchar config The configuration of Counter 0 (see table below for definitions)

Description Value Note
Tc0cHighTermCnt 0x30 High on terminal count
Tc0cOneShot 0x32 Hardware retriggerable one-shot
Tc0cDivByNCtr 0x34 Rate Generator
Tc0cSquareWave 0x36 Square wave
Tc0cSoftTrigStrobe 0x38 Software triggered strobe
Tc0cHardTrigStrobe 0x3A Hardware triggered strobe

Returns TerrNoError - No error
See Also tbkWtCntr0, tbkRdCntr0, tbkSetTrig
Program References None

tbkConfCntr0 programs the control register of Counter 0 in one of six modes. Counter 0 is a
general purpose counter with input, gate and output lines. The input of counter 0 can be configured
using the ctr0mode parameters of the tbkSetTrig command.

Mode 0, high on terminal count, is typically used to count events. After the initial count value (see
tbkWtCntr0) is set, the counter will decrement on each pulse of the Counter 0 input. The count
value at any time can be read using tbkRdCntr0. Counter 0 output (pin 2 of P1), which is initially
low, will go high when the counter decrements to 0.

Mode 1, hardware retriggerable one-shot, is used to generate a pulse following the occurrence of a
rising edge of the Counter 0 gate. The output, which is initially high, will go low after the
hardware trigger is received until the count decrements to 0.

Mode 2, rate generator, acts as a divide-by-N counter. The output will be high until the counter
value decrements to 1, when the output goes low for 1 clock pulse before going high again.

Mode 3, square wave generator, is similar to mode 2 except for the duty-cycle. The output will be
high for half of the count value, and low for the other half. If the count value is odd, the
output will remain high for the extra clock pulse.

Mode 4, software triggered strobe, will strobe each time the count value is loaded. The output is
initially high. After the count value is written and has decremented to 1, the output will go
low for one clock pulse before going high again.

Mode 5, hardware triggered strobe, is similar to mode 4 except the strobe is initiated by a hardware
trigger (rising edge of Counter 0 gate).

9-6 tbkCommand Reference (Standard API) TempBook User’s Manual

tbkDefaultHandler
DLL Function int tbkDefaultHandler(uchar tbkErrnum);
C tbkDefaultHandler(int tbkErrnum);
QuickBASIC BtbkDefaultHandler% (ByVal tbkErrnum%)
Visual Basic VBtbkDefaultHandler% (tbkErrnum%)
Turbo Pascal tbkDefaultHandler(tbkErrnum:integer);
Parameters
tbkErrnum The error code of the detected error.
Returns Nothing
See Also tbkSetErrHandler
Program References None

tbkDefaultHandler displays an error message and then exits the application program. When
the TempBook library is loaded, it invokes the default error handler whenever it encounters an error.
The error handler may be changed with tbkSetErrHandler.

tbkGetBackStat
DLL Function int tbkGetBackStat(uchar *active, ulong *count);
C tbkGetBackStat(unsigned char _far *active, unsigned long _far *count);
QuickBASIC BtbkGetBackStat%(active%, count&)
Visual Basic VBtbkGetBackStat% (active%, count&)
Turbo Pascal tbkGetBackStat(active:ByteP; count:LongP):integer;
Parameters
uchar *active A flag which will be returned non-zero if a background transfer is in progress, or 0 if not
ulong *count The number of scans acquired by the last or current background transfer
Returns TerrOverrun - Internal data buffer overrun

TerrFIFOFull - ADC FIFO Overrun
TerrNoError - No error

See Also tbkRdNBack, tbkStopBack
Program References None

tbkGetBackStat determines if a background operation is still in progress. It also reads the
number of bytes acquired by the last or current background operation initiated by the tbkRdNBack
function.

tbkGetBackStat can return two possible error codes. TerrFIFOFull is returned if the data
FIFO in the TempBook/66 is filled before the user can read the data out. In which case, the data
read may be invalid. If the tbkRdNBack is called with the cycle flag enabled, a TerrOverrun
can be returned. This means that the software is just fast enough to read one buffer of data. If this
error occurs, the amount of data available (specified by 'count') is valid, but the transfer was stopped.

tbkGetFreq
DLL Function int tbkGetFreq(float *freq);
C tbkGetFreq(float _far *freq);
QuickBASIC BtbkGetFreq% (freq!)
Visual Basic VBtbkGetFreq% (freq!)
Turbo Pascal tbkGetFreq(freq:FloatP):integer;
Parameters
float *freq A variable to hold the currently defined sampling frequency in Hz

Valid values: 100000.0 - 0.0002
Returns TerrNoError - No error
See Also tbkSetFreq, tbkSetClk
Program References None

tbkGetFreq reads the sampling frequency of the pacer clock. Note: tbkGetFreq assumes that
the 100 kHz/1 MHz jumper is set to the default position of 1MHz.

TempBook User’s Manual tbkCommand Reference (Standard API) 9-7

tbkGetProtocol
DLL Function int tbkGetProtocol(int *protocol)
C tbkGetProtocol(int *protocol);
QuickBASIC BtbkGetProtocol% (protocol%)
Visual Basic VBtbkGetProtocol% (protocol%)
Turbo Pascal tbkGetProtocol(protocol:DataP):integer;
Parameters
protocol A pointer to a value that will be set to the current protocol chosen from the protocol codes listed below

(additional EPP implementation codes may be described in the README file).
Name Description Value
TbkProtocolNone TempBook/66Communication Disabled 0
TbkProtocol8 8-bit I/O 1
TbkProtocol4 4-bit I/O 2
TbkProtocol4FPort Far Point F/Port EPP Interface 10
TbkProtocolSL 82360 SL EPP Interface 20

Returns An error number, or 0 is no error.
See Also tbkInit, tbkSetProtocol
Program References None

tbkGetProtocol returns the current parallel port communications protocol. tbkInit initially
sets the protocol set to either TbkProtocol8 or TbkProtocol4, indicating either 8-bit or 4-bit
standard parallel port protocol. tbkSetProtocol may be used to specify other protocols.

tbkGetScan
DLL Function int tbkGetScan(uint *chans, uchar *gains, uchar *polarities, uint *count);
C tbkGetScan(unsigned *chans, unsigned char *gains, unsigned char *polarity,

unsigned *count);
QuickBASIC BtbkGetScan% (chans%, gains%, polarity%, ByVal count%)
Visual Basic VBtbkGetScan% (chans%(), gains%(), polarity%(), count%)
Turbo Pascal tbkGetScan(chans:WordP; gains:ByteP; polarity:ByteP; count:word):integer;
Parameters
uint *chans An array to hold up to 512 channel numbers or 0 if the channel information is not desired. See table

at end of chapter for valid values.
uchar *gains An array to hold up to 512 gain values or 0 if the channel gain information is not desired. See table at

end of chapter for valid values.
uchar polarity Zero value causes TempBook to default to Unipolar mode. Non-zero value causes default Bipolar

mode. All ADC conversions except those started with tbkSetScan will use the default polarity.
uint count A variable to hold the number of values returned in the chans and gains arrays.
Returns TerrNoError - No error
See Also tbkSetScan, tbkSetMux
Program References None

tbkGetScan reads the current scan sequence consisting of up to 512 channels, gains and
polarities.

9-8 tbkCommand Reference (Standard API) TempBook User’s Manual

tbkInit
DLL Function int tbkInit(uchar lptPort, uchar lptIntr);
C tbkInit(unsigned int lptPort, unsigned char lptIntr);
QuickBASIC BtbkInit% (ByVal lptPort%, ByVal lptIntr%)
Visual Basic VBtbkInit% (lptPort%, lptIntr%)
Turbo Pascal tbkInit(lptPort:byte; lptIntr:byte):integer;
Parameters
unchar lptIntr The LPT interrupt level (7 for LPT1)
uchar lptPort The LPT port number (See table below for definitions.)

Description Value

LPT1 0x00

LPT2 0x01

LPT3 0x02

LPT4 0x03

Returns TerrNotOnLine - No communication with TempBook
TerrBadChannel - Invalid LPT channel
TerrNoTempBook - No TempBook/66detected
TerrNoError - No error

See Also tbkSelectPort, tbkClose
Program References None

tbkInit is used to perform multiple functions: initialize subroutine library variables, establish
communications with a TempBook unit, reset the TempBook hardware to power-on conditions, and
select the TempBook as the current TempBook. tbkInit can be called to reinitialize the
TempBook only after the tbkClose command is called to terminate communications with the
TempBook.

tbkInit will perform the following tasks:
• Stop any current acquisition
• Set the scan group to channel 1 with a gain of 1
• Set the pacer clock to 100 kHz
• Reset the counter/timers

Note: tbkInit must be called before any other TempBook function

tbkRd
DLL Function int tbkRd(uint chan, uint *sample, uchar gain);
C tbkRd(unsigned chan, unsigned *sample, unsigned char gain);
QuickBASIC BtbkRd% (ByVal chan%, sample%, ByVal gain%)
Visual Basic VBtbkRd% (chan%, sample%, gain%)
Turbo Pascal tbkRd(chan:word; sample:WordP; gain:byte):integer;
Parameters
uint chan A single channel number (see table at end of chapter for valid values).
unit *sample A pointer to a value where an A/D sample is stored
unchar gain The channel gain (see table at end of chapter for valid values)
Returns TerrFIFOFull - Buffer Overrun

TerrInvGain - Invalid gain
TerrInvChan - Invalid channel
TerrNoError - No Error

See Also tbkRdN, tbkSetMux, tbkSetTrig, tbkSoftTrig, tbkRdFore
Program References None

tbkAdcRd is used to take a single reading from the given A/D channel. This function will use a
software trigger to immediately trigger and acquire one sample from the specified A/D channel.

TempBook User’s Manual tbkCommand Reference (Standard API) 9-9

tbkRdBit
DLL Function int tbkRdBit(uchar bitNum, uchar *bitVal);
C tbkRdBit(unsigned char bitNum, unsigned char *bitVal);
QuickBASIC BtbkRdBit% (ByVal bitNum%, bitVal%)
Visual Basic VBtbkRdBit% (bitNum%, bitVal%)
Turbo Pascal tbkRdBit(bitNum:byte; bitVal:ByteP):integer;
Parameters
uchar bitNum The bit number of the specified digital I/O port to read

Valid values: 0 - 7
uchar *bitVal A variable to hold the value of the specified bit (non-zero if asserted, 0 if unasserted)
Returns TerrInvBitNum - Invalid bit number

TerrNoError - No error
See Also tbkWtByte, tbkRdByte, tbkWtBit
Program References None

tbkRdBit reads the state of a single digital input bit.

tbkRdByte
DLL Function int tbkRdByte(uchar *byteVal);
C tbkRdByte(unsigned char *byteVal);
QuickBASIC BtbkRdByte%(digIn%)
Visual Basic VBtbkRdByte% (digIn%)
Turbo Pascal tbkRdByte(byteVal:DataP):integer;
Parameters
uchar *byteVal A variable to hold the value of the digital input byte
Returns TerrNoError - No error
See Also tbkWtByte, tbkWtBit, tbkRdBit
Program References None

tbkRdByte reads the 8-bit digital input byte.

tbkRdCntr0
DLL Function int tbkRdCntr0(uint *cntr0, uchar latch);
C tbkRdCntr0(unsigned _far *cntr0, unsigned char mode);
QuickBASIC BtbkRdCntr0% (cntr0%, ByVal latch%)
Visual Basic VBtbkRdCntr0% (cntr0%, latch%)
Turbo Pascal tbkRdCntr0(cntr0:WordP; mode:Byte):integer;
Parameters
uint *cntr0 The value read back from the Counter 0 hold register

Valid values: 0 - 65535
uchar latch If latch is non-zero, the count register will be latched into the hold register before reading.

If latch is zero, the count register will be read directly.
Direct reading should only be performed when no clock pulses are present.

Returns TerrNoError - No error
See Also tbkConfCntr0, tbkWtCntr0
Program References None

tbkRdCntr0 reads the hold register of counter 0. This function is normally used with mode 0 of
counter 0 (see tbkConfCntr0) to read the current count value.

9-10 tbkCommand Reference (Standard API) TempBook User’s Manual

tbkRdFore
DLL Function int tbkRdFore(uint *sample);
C tbkRdFore(unsigned _far *sample);
QuickBASIC BtbkRdFore% (sample%)
Visual Basic VBtbkRdFore% (sample%)
Turbo Pascal tbkRdFore(sample:WordP):integer;
Parameters
uint *sample A pointer to a value where an A/D sample is stored

Valid values: (See tbkSetTag)
Returns TerrFIFOFull - Buffer overrun

TerrNoError - No error
See Also tbkReadFIFO, tbkSetTag, tbkSetClk, tbkSetTrig, tbkSetScan
Program References None

tbkRdFore will read one sample from the A/D data FIFO. This function, unlike the tbkRd
function, will not configure the trigger source. It assumes that the A/D converter has already been
configured to acquire data.

Note: If the A/D converter has not been configured to acquire data, this function may wait
indefinitely, hanging the computer.

tbkRdN
DLL Function int tbkRdN(uint chan, uint *buf, uint count, uchar trigger, uchar oneShot,

float freq, uchar gain);
C tbkRdN(unsigned chan, unsigned *buf, unsigned count, unsigned char trigger,

unsigned char oneShot, float freq, unsigned char gain);
QuickBASIC BtbkRdN% (ByVal chan%, buf%, ByVal count%, ByVal trigger%, ByVal oneShot%,

ByVal freq!, ByVal gain%)
Visual Basic VBtbkRdN% (chan%, buf%(), count%, trigger%, oneShot%, freq!, gain%)
Turbo Pascal tbkRdN(chan:word; buf:WordP; count:word; trigger:byte; oneShot:byte;

freq:real; gain:byte):integer;
Parameters
unit chan A single channel number (see table at end of chapter for valid values)
uint *buf An array where the A/D scans will be returned
uint count The number of scans to be taken

Valid values: 1 - 32767
uchar trigger The trigger source (see table at end of chapter for valid values)
uchar one shot A flag that if non-zero enables one-shot trigger mode, otherwise enables continuous mode.
float freq The sampling frequency in Hz (100000.0 to 0.0002)
uchar gain The channel gain (see table at end of chapter for valid values)
Returns TerrFIFOFull - Buffer overrun

TerrInvGain - Invalid gain
TerrIncChan - Invalid channel
TerrInvTrigSource - Invalid trigger
TerrInvLevel - Invalid level

See Also tbkRd, tbkRdScan, tbkRdScanN, tbkRdNFore, tbkSetFreq, tbkSetMux, tbkSetClk,
tbkSetTrig

Program References None

tbkRdN is used to take multiple scans from a single A/D channel. This function will configure the
pacer clock, arm the trigger and acquire ‘count’ scans from the specified A/D channel.

TempBook User’s Manual tbkCommand Reference (Standard API) 9-11

tbkRdNBack
DLL Function int tbkRdNBack(uint *buf, uint count, uchar cycle, uchar update Single);
C tbkRdNBack(unsigned _far *buf, unsigned count, unsigned char cycle, unsigned

char updateSingle);
QuickBASIC BtbkRdNBack% (buf%, ByVal count%, ByVal cycle%, ByVal updateSingle%)
Visual Basic VBtbkRdNBack% (buf%(), count%, cycle%, updateSingle%)
Turbo Pascal tbkRdNBack(buf:WordP; count:word; cycle:byte; updateSingle:byte):integer;
Parameters
uint *buf An array where the A/D scans will be placed
uint count The number of scans to be taken

Valid values: 1 - 32767
uchar cycle A flag that if non-zero will enable continuous operation, or if 0 will disable it
uchar updateSingle A flag that if non-zero will enable single scans to be read into buf or if 0 will enable buf to be updated in

a block of 256 scans
Returns TerrMultBackXfer - Background read already in progress

TerrNoError - No error
See Also tbkGetBackStat, tbkBackStop, tbkSetTag, tbkSetClk, tbkSetTrig
Program References None

tbkRdNBack reads multiple A/D scans in the background using interrupts. This function will
return control back to the user’s program after initiating the background transfer. The user can then
monitor the status of the background transfer with the tbkGetBackStat function or stop the
transfer with the tbkBackStop function. Because the transfer occurs in the background, the user
can perform other tasks in the foreground. This function assumes that the A/D acquisition has
already been setup.

If the cycle flag is true, the background transfer will run continuously looping back to the beginning
of ‘buf’ after ‘count’ scans have been read. This allows the user to read large amounts of data
without calling tbkRdNBack multiple times. As long as the user monitors how much data is in the
buffer and processes the data before it gets overwritten, the background transfer can run indefinitely.
In this mode, the user should get the total number of scans written into ‘buf’ using
tbkGetBackStat and keep track of the total number of scans processed in a variable. The
difference between these two totals is the number of unprocessed valid scans in ‘buf’ that the user
can process.

Note: the Visual Basic chapter includes an example program which demonstrates how to use the
cycle mode of tbkRdNBack.

The updateSingle flag allows the user to control whether the TempBook/66 updates ‘buf’ one
sample at a time or in blocks of 256 scans. Enabling updateSingle allows the user to read A/D
data during slow acquisitions as the data is acquired. Because the updateSingle flag is directly
tied to the number of interrupts that will be generated on the computer, the flag should not be
enabled if the acquisition rate is greater than roughly 500 scans per second (sampling rate * # of
channels). For example, an acquisition running at 1 Hz might enable the updateSingle flag so
that the data can be read each second rather than waiting for 256 seconds. An acquisition running at
10,000 Hz would disable the flag so the computer does not hang.

9-12 tbkCommand Reference (Standard API) TempBook User’s Manual

tbkRdNBackPreT
DLL Function int tbkRdNBackPreT(uint *buf, uint count, uchar cycle);
C tbkRdNBackPreT(unsigned int _far *buf, unsigned int count, unsigned char

cycle);
QuickBASIC BtbkRdNBackPreT% (buf%, ByVal count%, ByVal cycle%)
Visual Basic VBtbkRdNBackPreT% (buf%(), count%, cycle%)
Turbo Pascal tbkRdNBackPreT(buf:WordP; count:word; cycle:byte):integer;
Parameters
uint *buf An array where the A/D scans will be placed.
uint count The number of scans to be taken (1-32767)
uchar cycle A flag that if non-zero will enable continuous operation, or if 0 will disable it
Returns TerrMultBackXfer - Background read already in progress

TerrNoError - No error
See Also tbkGetBackStat, tbkBackStop, tbkSetTag, tbkSetTrigPreT
Program References PRETEX3 (all languages)

tbkRdNBackPreT reads multiple A/D scans, initiated by the tbkSetTrigPreT command, in
the background. This function will return control to the user's program after initiating the
background transfer. The user can then monitor the status of the background transfer with the
tbkGetBackStat function or stop the transfer with the tbkBackStop function. Because the
transfer occurs in the background, the user can perform other tasks in the foreground. This function
assumes that the pre-trigger acquisition has already been setup using the tbkSetTrigPreT
command.

If the 'cycle' flag is true, the background transfer will run continuously looping back to the beginning
of 'buf' after 'count' scans have been read. Under this mode, the background transfer will continue
until the acquisition completes. This allows the user to collect large amounts of data without calling
tbkRdNBackPreT several times. As long as the user monitors how much data is in the buffer and
processes the data before it gets overwritten, the background transfer can run until the acquisition
completes. In this mode, the user should get the total number of scans written into 'buf' using the
tbkGetBackStat function and keep track of the total number of scans processed in a variable.
The difference between these two totals is the number of unprocessed valid scans in 'buf' that the
user can process.

If, however, the 'cycle' flag is false, the background transfer will only collect the number of scans
specified in 'count'. If this is the case, a number of tbkRdNBack calls may be necessary to read all
the data collected during the pre-trigger mode acquisition.

tbkRdNFore
DLL Function int tbkRdNFore(uint *buf, uint count);
C tbkRdNFore(unsigned _far *buf, unsigned count);
QuickBASIC BtbkRdNFore% (buf%, ByVal count%)
Visual Basic VBtbkRdNFore% (buf%(), count%)
Turbo Pascal tbkRdNFore(buf:WordP; count:word):integer;
Parameters
uint *buf An array where the A/D samples will be placed
uint count The number of scans to be taken

Valid values: 1 - 32767
Returns TerrFIFOFull - Buffer overrun

TerrNoError - No error
See Also tbkSetClk, tbkSetTrig
Program References

tbkRdNFore reads multiple A/D scans in the foreground. Unlike tbkRdNBack, this function
does not use interrupts and does not return control immediately to the program. It will return only
when ‘count’ scans have been read. This function will not configure the A/D acquisition and
assumes that the A/D converter has already been configured to acquire data.

Note: If the A/D converter has not been configured to acquire data, this function may wait
indefinitely, hanging the computer.

TempBook User’s Manual tbkCommand Reference (Standard API) 9-13

tbkRdNForePreT
DLL Function int tbkRdNForePreT(uint *buf, uint count, uint *retcount, uchar *active);
C tbkRdNForePreT(unsigned int _far *buf, unsigned int count, unsigned int _far

*retcount, unsigned char _far *active);
QuickBASIC BtbkRdNForePreT% (buf%, ByVal count%, retcount%, active%)
Visual Basic VBtbkRdNForePreT% (buf%(), count%, retcount%, active%)
Turbo Pascal tbkRdNForePreT(buf:WordP; count:word; retcount: WordP; active:ByteP

):integer;
Parameters
uint *buf An array where the A/D samples will be placed
uint count The number of scans to be taken

Valid values: 1 - 32767
uint *retcount Pointer to an integer representing the number of scans actually taken
uchar *active Pointer to a flag indicating whether or not the pre-trigger acquisition is still active
Returns TerrFIFOFull - Buffer overrun

TerrNoError - No error
See Also tbkSetTrigPreT, tbkSetTag, tbkRdNForePreTWait, tbkRdNBackPreT
Program References PRETEX1 (all languages)

tbkRdNForePreT reads multiple A/D scans, initiated by the tbkSetTrigPreT command, in
the foreground. Unlike the tbkRdNBackPreT command, this function does not use interrupts and
does not return control immediately to the application program. It will only return when either the
specified count has been satisfied or the acquisition completes.

This function may be called subsequent to configuring a pre-trigger acquisition using the
tbkSetTrigPreT command. Once this command has been called, it will return only when one of
two possible conditions are met: 1) The specified number of scans has been collected, or, 2) the
trigger has been detected and the acquisition has completed. In the latter case, the returned 'active'
flag will be 0 and the number of scans actually collected will be returned in 'retcount'.

Note: If the A/D converter has not been configured to acquire data, this function may wait
indefinitely, hanging the computer.

9-14 tbkCommand Reference (Standard API) TempBook User’s Manual

tbkRdNForePreTWait
DLL Function int tbkRdNForePreTWait(uint *buf, uint count, uint *retcount);
C tbkRdNForePreTWait(unsigned int _far *buf, unsigned int count, unsigned int

_far *retcount);
QuickBASIC BtbkRdNForePreTWait% (buf%, ByVal count%, retcount%)
Visual Basic VBtbkRdNForePreTWait% (buf%(), count%, retcount%)
Turbo Pascal tbkRdNForePreTWait(buf:WordP; count:word; retcount:WordP):integer;
Parameters
uint *buf An array where the A/D samples will be placed
uint count The number of scans to be taken

Valid values: 1 - 32767
uint *retcount Pointer to an integer representing the number of scans actually taken
Returns TerrFIFOFull - Buffer overrun

TerrNoError - No error
See Also tbkSetTrigPreT, tbkRdNForePreT, tbkRdNBackPreT
Program References PRETEX2 (all languages)

tbkRdNForePreTWait reads multiple A/D scans, initiated by the tbkSetTrigPreT
command, in the foreground. Unlike the tbkRdNForePreT command, this function will not
return until the acquisition completes. It will only return when the specified trigger event has
occurred and the specified post trigger count has been satisfied.

This function may be called subsequent to configuring a pre-trigger acquisition using the
tbkSetTrigPreT command. Once this command has been called, it will return only when the
trigger has been detected and the acquisition has completed. The amount specified in the ‘count’
parameter specifies the length of the supplied buffer in scans. Unlike tbkAdcRdNForePreT this
command will not return when ‘count’ is satisfied; instead, it will continue acquiring by wrapping
the scans to the beginning of the buffer until the final post-trigger scan is collected and the
acquisition completes.

When the acquisition completes, control will be returned to the application program along with the
actual number of scans collected in the ‘retcount’ parameter.

Note: If the A/D converter has not been configured to acquire data or the trigger event never occurs,
this function may wait indefinitely, hanging the computer.

tbkRdScan
DLL Function int tbkRdScan(uint startChan, uint endChan, uint *buf, uchar gain);
C tbkRdScan(unsigned startChan, unsigned endChan, unsigned * buf, unsigned

char gain);
QuickBASIC BtbkRdScan% (ByVal startChan%, ByVal endChan%, buf%, ByVal gain%)
Visual Basic VBtbkRdScan% (startChan%, endChan%, buf%(), gain%)
Turbo Pascal tbkRdScan(startChan:word; endChan:word; buf:WordP; gain:byte):integer;
Parameters
uint startChan The starting channel of the scan group (see table at end of chapter for valid values)
uint endChan The ending channel of the scan group (see table at end of chapter for valid values)
uint *buf An array where the A/D scans will be placed
unchar gain The channel gain (see table at end of chapter for valid values)
Returns TerrInvGain - Invalid gain

TerrInvChan - Invalid channel
TerrNoError - No error

See Also tbkRd, tbkRdN, tbkRdNScan, tbkSetMux, tbkRdFore, tbkSetClk, tbkSetTrig
Program References

tbkRdScan reads a single sample from multiple channels. This function will use a software trigger
to immediately trigger and acquire one scan consisting of each channel starting with ‘startChan’ and
ending with ‘endChan’.

TempBook User’s Manual tbkCommand Reference (Standard API) 9-15

tbkRdScanN
DLL Function int tbkRdScanN(uint startChan, uint endChan, uint *buf, uint count, uchar

trigger, uchar one Shot, float freq, uchar gain);
C tbkRdScanN(unsigned startChan, unsigned endChan, unsigned * buf, unsigned

count, unsigned char trigger, unsigned char oneShot, float freq, unsigned
char gain);

QuickBASIC BtbkRdScanN% (ByVal startChan%, ByVal endChan%, buf%, ByVal count%, ByVal
trigger%, ByVal oneShot%, ByVal freq!, ByVal gain%)

Visual Basic VBtbkRdScanN% (startChan%, endChan%, buf%(), count%, trigger%, oneShot%,
freq!, gain%)

Turbo Pascal tbkRdScanN(startChan:word; endChan:word; buf:WordP; count:word;
trigger:byte; oneShot:byte; freq:real; gain:byte):integer;

Parameters
uint startChan The starting channel of the scan group (see table at end of chapter for valid values)
uint endChan The ending channel of the scan group (see table at end of chapter for valid values)
uint *buf An array where the A/D scans will be placed
uint count The number of scans to be read

Valid values: 1 - 65536
uchar trigger The trigger source (see table at end of chapter for valid values)
uchar one Shot A flag that if non-zero enables one-shot trigger mode
float freq The sampling frequency in Hz

Valid values: 100000.0 - 0.0002
uchar gain The channel gain (see table at end of chapter for valid values)
Returns TerrInvGain - Invalid gain

TerrInvChan - Invalid channel
TerrInvTrigSource - Invalid trigger
TerrInvLevel - Invalid Level
TerrFIFOFull - Buffer Overrun
TerrNoError - No error

See Also tbkRd, tbkRdN, tbkRdScan, tbkRdNFore, tbkSetClk, tbkSetTrig
Program References

tbkRdScanN reads multiple scans from multiple A/D channels. This function will configure the
pacer clock, arm the trigger and acquire ‘count’ scans consisting of each channel starting with
‘startChan’ and ending with ‘endChan’.

tbkRdTemp
DLL Function tbkRdTemp(uint chan, uchar tcType, int * temp)
C tbkRdTemp(unsigned chan, unsigned tcType, int * temp);
QuickBASIC BtbkRdTemp% (ByVal chan%, ByVal tcType%, temp%)
Visual Basic VBtbkRdTemp% (chan%, tcType%, temp%)
Turbo Pascal tbkRdTemp(chan:word; tcType:word; temp:DataP):integer;
Parameters
uint chan Single channel number (see table at end of chapter for valid values)
uint tcType Thermocouple type (see table at end of chapter for valid values)
int *temp Pointer to a value where the converted temperature is to be stored
Returns TerrInvChan - Invalid Channel

TerrTCE_Type - Invalid Thermocouple Type
See Also tbkTCSetup, tbkTCConvert, tbkTCSetupConvert
Program References TEMPEX1 (all languages)

tbkRdTemp is used to take a single thermocouple reading from the given analog input channel.
The reading will be zero corrected, span corrected, and linearized to yield a temperature reading in
tenths of a degree Celsius. This function will use software triggering to immediately trigger and
acquire one sample.

If a calibration constant file with the default name, “tempbook.cal”, is not visible to the calling
program then no span correction is performed.

tbkSetMode must be called before this function to configure the TempBook for differential
operation in either unipolar or bipolar mode.

9-16 tbkCommand Reference (Standard API) TempBook User’s Manual

tbkRdTempN
DLL Function tbkRdTempN(uint chan, uchar tcType, uint count, int * temp, uint * buf,

float freq, uint avg)
C tbkRdTempN(unsigned chan, unsigned tcType, unsigned count, int * temp,

unsigned * buf, float freq, unsigned avg);
QuickBASIC BtbkRdTempN% (ByVal chan%, ByVal tcType%, ByVal count%, temp%, buf%, ByVal

freq!, ByVal avg%)
Visual Basic VBtbkRdTempN% (chan%, tcType%, count%, temp%(), buf%(), freq!, avg%)
Turbo Pascal tbkRdTempN(chan:word; tcType:word; count:word; temp:DataP; buf:WordP;

freq:real; avg:word):integer;
Parameters
uint chan Single channel number (see table at end of chapter for valid values)
uint tcType Thermocouple type (see table at end of chapter for valid values)
uint count Number of scans to read.
int *temp Pointer to a value where the converted temperature is to be stored
uint* buf Pointer to an array where the raw ADC counts are to be stored.
float freq Sampling frequency in Hz

Valid values: 100000.0 - 0.0002
uint avg Type of averaging to be used.

0 - block averaging
1 - no averaging
2 - moving averaging

Returns TerrInvChan - Invalid Channel
TerrTCE_Type - Invalid Thermocouple Type
TerrInvCount - More than 1 scan specified with freq = 0

See Also tbkRdTemp, tbkRdTempScan, tbkRdTempScanN, tbkTCSetup, tbkTCConvert,
tbkTCSetupConvert

Program References TEMPEX1 (all languages)

tbkRdTempN is used to take multiple thermocouple readings from the given analog input channel.
The readings will be zero corrected, span corrected, and linearized to yield temperature reading(s) in
tenths of a degree Celsius. This function will use pacer clock triggering to acquire samples at the
rate defined in the parameter freq. The parameter avg is used to specify no, block, or moving
averaging.

A pointer to a buffer array must be provided for storage of the raw ADC counts. The array
dimension must be at least 4 * count.

If a calibration constant file with the default name “tempbook.cal” is not visible to the calling
program, then no span correction is performed.

tbkSetMode must be called before this function to configure the TempBook for differential
operation in either unipolar or bipolar mode.

TempBook User’s Manual tbkCommand Reference (Standard API) 9-17

tbkRdTempScan
DLL Function tbkRdTempScan(uint startChan, uint endChan, uchar tcType, int * temp)
C tbkRdTempScan(unsigned startChan, unsigned endChan, unsigned tcType, int *

temp);
QuickBASIC BtbkRdTempScan% (ByVal startChan%, ByVal endChan%, ByVal tcType%, temp%)
Visual Basic VBtbkRdTempScan% (startChan%, endChan%, tcType%, temp%())
Turbo Pascal tbkRdTempScan(startChan:word; endChan:word; tcType:word;

temp:DataP):integer;
Parameters
uint startchan Single channel number (see table at end of chapter for valid values)
uint endChan Ending channel of the scan group (see table at end of chapter for valid values)
uint tcType Thermocouple type (see table at end of chapter for valid values)
int *temp An array where the A/D scan will be placed.
Returns TerrInvChan - Invalid Channel

TerrTCE_Type - Invalid Thermocouple Type
See Also tbkRdTemp, tbkRdTempN, tbkRdTempScanN, tbkTCSetup, tbkTCConvert,

tbkTCSetupConvert
Program References TEMPEX1 (all languages)

tbkRdTempScan is used to take thermocouple readings from analog input channels 'startChan'
through 'endChan'. The readings will be zero corrected, span corrected, and linearized to yield
temperature readings in tenths of a degree Celsius. This function will use software triggering to
immediately trigger and acquire one scan.

If a calibration constant file with the default name "tempbook.cal" is not visible to the calling
program, then no span correction is performed.

tbkSetMode must be called before this function to configure the TempBook for differential
operation in either unipolar or bipolar mode.

9-18 tbkCommand Reference (Standard API) TempBook User’s Manual

tbkRdTempScanN
DLL Function tbkRdTempScanN(uint startChan, uint endChan, uchar tcType, uint count, int *

temp, uint * buf, float freq, uint avg)
C tbkRdTempScanN(unsigned startChan, unsigned endChan, unsigned tcType,

unsigned count, int * temp, unsigned * buf, float freq, unsigned avg);
QuickBASIC BtbkRdTempScanN% (ByVal startChan%, ByVal endChan%, ByVal tcType%, ByVal

count%, temp%, buf%, ByVal freq!, ByVal avg%)
Visual Basic VBtbkRdTempScanN% (startChan%, endChan%, tcType%, count%, temp%(), buf%(),

freq!, avg%)
Turbo Pascal tbkRdTempScanN(startChan:word; endChan:word; tcType:word; count:word;

temp:DataP; buf:WordP; freq:real; avg:word):integer;
Parameters
uint startchan Single channel number (see table at end of chapter for valid values)
uint endChan Ending channel of the scan group (see table at end of chapter for valid values)
uint tcType Thermocouple type (see table at end of chapter for valid values)
uint count Number of scans to read.
int *temp Pointer to a value where the converted temperatures are to be stored
uint *buf Pointer to an array where the raw ADC counts are to be stored.
float freq Sampling frequency in Hz

Valid values: 100000.0 - 0.0002
uint avg Type of averaging to be used.
Returns TerrInvChan - Invalid Channel

TerrTCE_Type - Invalid Thermocouple Type
TerrInvCount - More than 1 scan specified with freq = 0

See Also tbkRdTemp, tbkRdTempN, tbkRdTempScan, tbkTCSetup, tbkTCConvert,
tbkTCSetupConvert

Program References TEMPEX1 (all languages)

tbkRdTempScanN is used to take multiple thermocouple readings from analog input channels
‘startChan’ through ‘endChan’. The readings will be zero-corrected, span-corrected, and linearized
to yield temperature readings in tenths of a degree Celsius. This function will use pacer-clock
triggering to acquire samples at the rate defined in the parameter freq. The parameter avg is used
to specify no, block, or moving averaging.

A pointer to a buffer array must be provided for storage of the raw ADC counts. The array
dimension must be at least count * (endChan - startChan + 4).

If a calibration constant file with the default name “tempbook.cal” is not visible to the calling
program, then no span correction is performed.

tbkSetMode must be called before this function to configure the TempBook for differential
operation in either unipolar or bipolar mode.

TempBook User’s Manual tbkCommand Reference (Standard API) 9-19

tbkReadCalFile
DLL Function tbkReadCalFile(char *calfile);
C tbkReadCalFile(char *calfile);
QuickBASIC BtbkReadCalFile% (ByVal calfile$)
Visual Basic VBtbkReadCalFile% (ByVal calfile$)
Turbo Pascal tbkReadCalFile(calfile : string) : integer;
Parameters
char *calfile The file name with optional path information of the calibration file. If calfile is NULL or empty (""), the

default calibration file TEMPBOOK .CAL will be read.
Returns TerrNoError - No error

TerrInvCalfile - Error occurred while opening or reading calibration file
See Also tbkCalSetup, tbkCalConvert, tbkCalSetupConvert
Program References None

tbkReadCalFile is the initialization function for reading in the calibration constants from the
calibration text file. This function, which is usually called once at the beginning of a program, will
read all the calibration constants from the specified file. If calibration constants for a specific gain
setting are not contained in the file, ideal calibration constants will be used, essentially performing
no calibration for that channel. If an error occurs while trying to open the calibration file, ideal
calibration constants will be used for all channels and a non-zero error code will be returned by the
tbkReadCalFile function.

See the Software Calibration and Zero Compensation chapter for a complete description of
calibration.

tbkSelectPort
DLL Function int tbkSelectPort(uchar lptPort);
C tbkSelectPort(unsigned int lptPort);
QuickBASIC BtbkSelectPort% (ByVal lptPort%)
Visual Basic VBtbkSelectPort% (lptPort%)
Turbo Pascal tbkSelectPort(lptPort:byte):integer;
Parameters
uchar lptPort The LPT port number (see table below for definitions.)

Description Value
LPT1 0x00
LPT2 0x01
LPT3 0x02
LPT4 0x03

Returns TerrNotOnLine - No communications with TempBook
TerrBadChannel - Invalid LPT channel
TerrNoTempBook - No TempBook/66 detected
TerrNoError - No error

See Also

Program References

tbkSelectPort selects an initialized TempBook. This function causes any subsequent function
calls to be performed on this TempBook. Because tbkInit initializes then selects a TempBook,
tbkSelectPort is only needed when using multiple TempBooks.

Note: tbkInit must be called with the corresponding LPT port before tbkSelectPort can
select it.

9-20 tbkCommand Reference (Standard API) TempBook User’s Manual

tbkSetClk
DLL Function int tbkSetClk(uint ctr1, uint ctr2);
C tbkSetClk(unsigned ctr1, unsigned ctr2);
QuickBASIC BtbkSetClk% (ByVal ctr1%, ByVal ctr2%)
Visual Basic VBtbkSetClk% (ctr1%, ctr2%)
Turbo Pascal tbkSetClk(ctr1:word; ctr2:word):integer;
Parameters
uint ctr1 The value of the counter 1 divisor

Valid values: 0 - 65535
uint ctr2 The value of the counter 2 divisor

Valid values: 0 - 65535
Returns TerrInvClock - Invalid clock

TerrNoError - No error
See Also tbkSetFreq, tbkGetFreq
Program References

tbkSetClk sets the frequency of the pacer clock using the two specified counter values. The
pacer clock can be used to control the sampling rate of the A/D converter. The frequency is defined
to be xtal/ctr1*ctr2) where xtal is the frequency of the board crystal (either 1 MHz or 100 kHz).

tbkSetErrHandler
DLL Function tbkSetErrHandler(tbkSetErrHandlerFTP tbkErrorHandler);
C tbkSetErrHandler(tbkErrorHandlerFPT tbkErrorHandler);
QuickBASIC BtbkSetErrHandler% (ByVal tbkErrorHandler&)
Visual Basic VBtbkSetErrHandler% (tbkErrorHandler%)
Turbo Pascal tbkSetErrHandler(tbkErrorHandler:ErrorFuncT):integer;
Parameters
tbkErrHandler This is a function that takes an integer (error code) and returns nothing, or NULL to disable.
Returns TerrNoError - No error, or an error number
See Also tbkDefaultHandler
Program References

*** For C and Pascal Only - If the driver detects an error condition during its operation, it
automatically calls a default system error handler. This command allows the user to supply an
error handler that is automatically called when a system error is detected.

*** For Visual Basic and QuickBASIC - If the driver detects an error condition during its operation,
it will pass the error code as the return value of each function. This command allows the user to
set a BASIC error number which will be generated when an error occurs. The error can then be
handled using the standard ONERROR feature of BASIC.

TempBook User’s Manual tbkCommand Reference (Standard API) 9-21

tbkSetFreq
DLL Function int tbkSetFreq(float freq);
C tbkSetFreq(float freq);
QuickBASIC BtbkSetFreq% (ByVal freq!)
Visual Basic VBtbkSetFreq% (freq!)
Turbo Pascal tbkSetFreq(freq:real):integer;
Parameters
float freq The sampling frequency in Hz

Valid values: 100000.0 - 0.0002
Returns TerrNoError - No error
See Also tbkGetFreq, tbkSetClk
Program References None

tbkSetFreq calculates then sets the frequency of the pacer clock using the specified frequency in
Hz. The frequency is converted to two counter values that control the frequency of the pacer clock.
In this conversion, some resolution of the frequency may be lost. tbkRdFreq can be used to read
the exact frequency setting of the pacer clock. tbkSetClk can be used to explicitly set the two
counter values of the pacer clock. The pacer clock can be used to control the sampling rate of the
A/D converter.

tbkSetMode
DLL Function tbkSetMode(uchar di_se, uchar polarity);
C tbkSetMode(unsigned char di_se, unsigned char polarity);
QuickBASIC BtbkSetMode% (ByVal di_se%, ByVal polarity%)
Visual Basic VBtbkSetMode% (ByVal di_se%, ByVal polarity%)
Turbo Pascal tbkSetMode(di_se:byte; polarity:byte):integer;
Parameters
uchar di_se Zero value causes TempBook to go to single-ended mode (power-on default).

Non-zero value causes differential mode.
uchar polarity Zero value causes TempBook to default to Unipolar mode. Non-zero value causes default Bipolar

mode. All ADC conversions except those started with tbkSetScan will use the default polarity.
Returns TerrNoError - No error
See Also
Program References None

tbkSetMode is used to program the gain amp for single-ended or differential operation and to set
the default polarity.

Single-ended operation measures the voltage of the selected channel referred to analog ground.
Differential operation measures differences in voltage between a pair of selected channels.

Polarity is unipolar or bipolar:
• Unipolar maximum voltage range is 0 to +10 V
• Bipolar maximum voltage range is -10 to +10 V.

9-22 tbkCommand Reference (Standard API) TempBook User’s Manual

tbkSetMux
DLL Function int tbkSetMux(uint startChan, uint endChan, uchar gain);
C tbkSetMux(unsigned startChan, unsigned endChan, unsigned char gain);
QuickBASIC BtbkSetMux% (ByVal startChan%, ByVal endChan%, ByVal gain%)
Visual Basic VBtbkSetMux% (startChan%, endChan%, gain%)
Turbo Pascal tbkSetMux(startChan:word; endChan:word; gain:byte):integer;
Parameters
uint startChan The starting channel of the scan group (see table at end of chapter for valid values)
uint endChan The ending channel of the scan group (see table at end of chapter for valid values)
uchar gain The gain value for all channels (see table at end of chapter for valid values)
Returns TerrInvGain - Invalid gain

TerrIncChan - Invalid channel
TerrNoError -No error

See Also tbkSetScan, tbkGetScan
Program References

tbkSetMux sets a simple scan sequence of local A/D channels from ‘startChan’ to ‘endChan’ all
with the specified gain value. This provides a simple alternative to tbkSetScan if consecutive
channels need to be acquired.

TempBook User’s Manual tbkCommand Reference (Standard API) 9-23

tbkSetProtocol
DLL Function int tbkSetProtocol(int protocol)
C tbkSetProtocol(int protocol);
QuickBASIC BtbkSetProtocol% (ByVal protocol%)
Visual Basic VBtbkSetProtocol% (protocol%)
Turbo Pascal tbkSetProtocol(protocol:integer):integer;
Parameters
protocol One of the predefined protocol codes listed below (additional protocol codes may be described in the

README file).
Name Description Value
TbkProtocol8 8-bit I/O 1
TbkProtocol4 4-bit I/O 2
TbkProtocolFPort Far Point F/Port EPP Interface 10
TbkProtocolSL 82360 SL EPP Interface 20
TbkProtocolSMC666 SMC 37C666 EPP mode 30
TbkProtocolEPPBIOS EPP bios mode 40
TbkProtocolPastEPP WBK20/21 Fast EPP mode 50

Returns An error number, or 0 if no error.
See Also tbkInit, tbkGetProtocol
Program References

tbkSetProtocol specifies to the TempBook/66 driver the type of parallel-port implementation
and protocol that is available on the computer. The driver then attempts to configure the computer
and the TempBook/66 to communicate using the specified protocol. Since establishing the protocol
may affect the settings of the TempBook, tbkSetProtocol should only be invoked immediately
after tbkInit has established communications with and reset the TempBook. Switching protocols
during normal TempBook/66 operation is not recommended.

Two types of parallel port implementations are supported by the TempBook: standard and enhanced.
Standard parallel ports, using the TempBook/66 manufacturer’s proprietary protocols, are capable of
receiving data either 4 or 8 bits at a time. When possible, 8-bit operation is preferred (it is much
faster), but not all standard parallel ports support 8-bit data reception.

Enhanced parallel ports (EPP) include extra hardware that increases the rate of data transfer to 3 to
10 times the rate of a standard parallel port. Unfortunately, not every computer includes EPP
capability and attempting to use EPP on an incompatible computer may cause the TempBook/66
driver to access I/O locations which are not part of the printer port interface. Such accesses may
interfere with other operations and cause the computer to operate incorrectly. For this reason, EPP
operation must be explicitly requested by the program.

When the TempBook/66 is initialized by tbkInit, it is initially configured for a standard parallel
port protocol: either 8-bit, if possible, or the slower 4-bit protocol. After tbkInit has completed,
tbkSetProtocol may be used to switch to another supported protocol.

If tbkSetProtocol is unable to establish communications using the specified protocol, then it
will try to establish communications using the standard port protocols, first 8-bit, then the slower 4-
bit. In such an event, tbkSetProtocol will not return an error indication unless it is unable to
establish any protocol.

In any case, tbkGetProtocol may be used to check the current operating protocol.

9-24 tbkCommand Reference (Standard API) TempBook User’s Manual

tbkSetScan
DLL Function int tbkSetScan(uint *chans, uchar *gains, uchar polarities, uint count);
C tbkSetScan(unsigned *chans, unsigned char *gains, unsigned char *polarity,

unsigned count);
QuickBASIC BtbkSetScan% (chans%, gains%, polarity%, ByVal count%)
Visual Basic VBtbkSetScan% (chans%(), gains%(), polarity%(), count%)
Turbo Pascal tbkSetScan(chans:WordP; gains:ByteP; polarity:ByteP; count:word):integer;
Parameters
uint *chans An array of up to 512 channel numbers (see table at end of chapter for valid values)
uchar *gains An array of up to 512 gain values (see table at end of chapter for valid values)
uchar polarities An array of up to 512 polarity values. Zero value causes TempBook/66 to select Unipolar mode. Non-

zero values causes Bipolar mode.
uint count The number of values in the chans and gains arrays

Valid values: 1 - 512
Returns TerrNotCapable - No high speed digital

TerrInvGain - Invalid gain
TerrInvChan - Invalid channel
TerrNoError - No error

See Also tbkGetScan, tbkSetMux
Program References

tbkSetScan configures a scan sequence consisting of multiple channels, polarities and
corresponding gains. As many as 512 entries can be made in the scan configuration. Any analog
input channel at any gain can be included in the scan. Channels can be entered multiple times at the
same or different gain. The high-speed digital I/O port can also be included although its gain value
will be ignored.

TempBook User’s Manual tbkCommand Reference (Standard API) 9-25

tbkSetTrig
DLL Function int tbkSetTrig(uchar trigger, uchar one shot, uchar ctr0 mode, uchar pacer

Mode);
C tbkSetTrig(unsigned char trigger, unsigned char oneShot, unsigned char

ctr0mode, unsigned char pacerMode);
QuickBASIC BtbkSetTrig% (ByVal trigger%, ByVal oneShot%, ByVal ctr0mode%, ByVal

pacerMode%)
Visual Basic VBtbkSetTrig% (ByVal trigger%, ByVal oneShot%, ByVal ctr0mode%, ByVal

pacerMode%)
Turbo Pascal tbkSetTrig(trigger:byte; oneShot:byte; ctr0Mode:byte; pacerMode:byte

):integer;
Parameters
uchar trigger The trigger source (see table at end of chapter for valid values)
uchar one Shot A flag that if non-zero enables one-shot trigger mode, otherwise enables continuous mode
ctr0mode A non-zero flag selects an internal 100 kHz clock to be the input to counter 0.

If the flag is zero, only the external clock is the input to counter 0.
See figure in tbkConfCntr0 for detailed diagram.

pacer Mode A flag that if zero, disables the external TTL Trigger from affecting the pacer clock.
If the flag is non-zero, any low-level on the TTL trigger will cause the pacer clock to pause.

Returns TerrInvTrigSource - Invalid trigger
TerrInvLevel - Invalid level
TerrNoError - No error

See Also tbkConfCntr0
Program References

tbkSetTrig sets and arms the trigger of the A/D converter. Eight trigger sources and several
mode flags can be used to generate a wide variety of acquisitions. The tbkSetTrig command
will stop any current acquisitions, empty the TempBook/66 of any data previously acquired and arm
the TempBook/66 using the specified trigger source.

The pacer clock trigger source can be used to acquire data at a constant frequency. The sampling
rate can be set using the tbkSetClk or tbkSetFreq functions. The one-shot flag has no
meaning when using this trigger source.

The software trigger source allows the user to trigger the A/D from software using the
tbkSoftTrig function. When the one-shot mode is enabled, a single scan will be initiated by the
software trigger. In the continuous mode (one-shot disabled), sending a software trigger will cause
the A/D converter to sample at the rate of the pacer clock.

An external TTL pulse can be used to initiate a scan or start an acquisition when using the external
TTL rising or falling edge trigger source. The external TTL pulse should be applied to the trig
input. The pulse will initiate a single scan in one-shot mode and a continuous acquisition at the
pacer clock frequency in continuous mode.

Setting the counter 0 mode flag true will enable an onboard 100 kHz clock to be ANDed with the
counter 0 input to produce the input to counter 0. If nothing is connected to counter 0 input, the line
will float high essentially clocking counter 0 off the 100KHz clock. If this flag is false, counter 0
can only be clocked from the counter 0 input pin. Counter 0 can be used as an alternative trigger
source by connecting the counter 0 output to the trig input and choosing an external TTL trigger.
Counter 0 can also be used for general counter applications.

The pacer mode flag enables/disables operation of the pacer clock. If this flag is non-zero, the pacer
clock will be gated with the trig input. If it is zero, the pacer clock will be enabled.

9-26 tbkCommand Reference (Standard API) TempBook User’s Manual

tbkSetTrigPreT
DLL Function int tbkSetTrigPreT(uchar trigger, uint channel, uint level, uint precount,

uint postcount);
C tbkSetTrigPreT(unsigned char source, unsigned int channel, unsigned int

level, unsigned int preCount, unsigned int postCount);
QuickBASIC BtbkSetTrigPreT% (ByVal source%, ByVal channel%, ByVal level%, ByVal

preCount%, ByVal postCount%)
Visual Basic VBtbkSetTrigPreT% (source%, channels%, level%, preCount%, postCount%)
Turbo Pascal tbkSetTrigPreT(source:byte; channel:word; level:word; preCount:word;

postCount:word):integer;
Parameters
uchar trigger The analog trigger source - DtsAnalogRisePos, DtsAnalogFallPos, DtsAnalogRisNeg,

DtsAnalogFallNeg
uint channel The channel in the current scan group to trigger on
uint level The level for the specified channel at which to detect the trigger (0-4095)
uint precount The number of pre-trigger scans to collect before arming the trigger (1-32767)
uint postcount The number of post-trigger scans to collect after the occurrence of the trigger (1-32767)
Returns TerrInvTrigSource - Invalid trigger

TerrInvLevel - Invalid level
TerrNoError - No error

See Also tbkSetFreq, tbkSetClk, tbkRdNForePreT, tbkRdNForePreTWait, tbkRdNBackPreT
Program References PRETEX1, PRETEX2, PRETEX3 (ALL LANGUAGES)

tbkSetTrigPreT sets the trigger for analog level triggering and initiates the collection of a pre-
trigger data acquisition. The tbkSetTrigPreT command will stop any current acquisition,
empty the TempBook/66 of any data previously acquired, arm the TempBook/66 using the specified
analog level trigger source and will immediately begin the collection of the specified amount of pre-
trigger data.

This command allows the configuration of a data acquisition that includes both pre-trigger and post-
trigger data. The specified pre-trigger amount indicates the number of pre-trigger scans to be
collected before the trigger is armed. The trigger event will only be recognized after the specified
pre-trigger amount has been satisfied and the trigger is armed. This means that the specified pre-
trigger amount represents the minimum amount of pre-trigger data which will actually be collected.
The specified post-trigger amount represents the number of scans taken after the detection of the
trigger event. This amount represents the exact number of scans taken subsequent to the detection of
the trigger event.

The pacer clock may be used to set up the sampling rate for the acquisition. The sampling rate can
best be set by using the tbkSetClk or tbkSetFreq commands.

The four analog trigger sources, rising or falling slope with either a positive or negative level, can be
used with any one of the channels in the currently defined scan group. This channel parameter
represents the relative channel within the scan group. It does not necessarily represent the actual
physical channel number.

When setting up a pre-trigger acquisition, a specific command set must be used to retrieve the data.
This command set includes tbkRdNForePreT, tbkRdNForePreTWait and
tbkRdNBackPreT. For more information on these commands, refer to the command description
for each specific command in this chapter.

TempBook User’s Manual tbkCommand Reference (Standard API) 9-27

tbkSoftTrig
DLL Function int tbkSoftTrig(void);
C tbkSoftTrig(void);
QuickBASIC BtbkSoftTrig% ()
Visual Basic VBtbkSoftTrig% ()
Turbo Pascal tbkSoftTrig:integer;
Parameters None
Returns TerrNoError - No error
See Also tbkSetTrig
Program References

tbkSoftTrig is used to send a software trigger command to the TempBook. This software
trigger can be used to initiate a scan or an acquisition from a program after configuring the software
trigger as the trigger source.

tbkStopBack
DLL Function int tbkStopBack(void);
C tbkStopBack(void);
QuickBASIC BtbkStopBack% ()
Visual Basic VBtbkStopBack% ()
Turbo Pascal tbkStopBack:integer;
Parameters None
Returns TerrNoError - No error
See Also tbkRdNBack, tbkGetBackStat
Program References

tbkStopBack stops a background operation initiated by the tbkRdNBack function.

tbkTCAutoZero
DLL Function tbkTCAutoZero(uint zero);
C tbkTCAutoZero(unsigned zero);
QuickBASIC BtbkTCAutoZero% (ByVal zero%)
Visual Basic VBtbkTCAutoZero% (ByVal zero%)
Turbo Pascal tbkTCAutoZero(zero:word):integer;
Parameters
uint zero If non-zero will enable auto zero compensation in the tbkTC… functions
Returns TerrZCInvParam - Invalid parameter value

TerrNoError - No error
See Also tbkZeroSetup, tbkZeroConvert, tbkZeroSetupConvert, tbkTCSetup, tbkTCConvert,

tbkTcSetupConvert
Program References None

The tbkTCAutoZero function will configure the thermocouple linearization functions to
automatically perform zero compensation. This is the easiest way to use zero compensation with the
TempBook. When enabled, the thermocouple conversion functions will require a CJC zero reading
and a TC zero reading to precede the actual CJC and TC reading.

9-28 tbkCommand Reference (Standard API) TempBook User’s Manual

tbkTCConvert
DLL Function tbkTcConvert (uint *counts, uint scans ,int *temp, uint ntemp);
C tbkTCConvert(unsigned _far *counts, unsigned scans, int _far *temp, unsigned

ntemp);
QuickBASIC BtbkTCConvert% (counts%, ByVal scans%, temp%, ByVal ntemp%)
Visual Basic VBtbkTCConvert% (counts%(), ByVal scans%, temp%(), ByVal ntemp%)
Turbo Pascal tbkTCConvert(counts:WordP; scans:word; temp:DataP; ntemp:word):integer;
Parameters
uint *counts Raw A/D data from one or more scans
uint scans Number of scans of raw data in counts
int * temp Variable array to hold converted temperatures
uint ntemp Size of temperature array
Returns TerrTCE_NOSETUP - Setup was not called

TerrTCE_PARAM - Param out of range
TerrNoError - No Error

See Also tbkTCSetup, tbkTCSetupConvert
Program References None

tbkTCConvert takes raw A/D readings and converts them to temperature readings in tenths of
degrees Celsius. Note: Total number of conversions (scan * chans/scan) must be less than 32 K.

tbkTCSetup
DLL Function tbkTCSetup(uint nscan, uint cjcPosition, uint ntc , uint tcType, uchar

bipolar, uint avg);
C tbkTCSetup(unsigned nscan, unsigned cjcPosition, unsigned ntc, unsigned

tcType, unsigned char bipolar, unsigned avg);
QuickBASIC BtbkTCSetup% (ByVal nscan%, ByVal cjcPosition%, ByVal ntc%, ByVal tcType%,

ByVal bipolar%, ByVal avg%)
Visual Basic VBtbkTCSetup% (ByVal nscan%, ByVal cjcPosition%, ByVal ntc%, ByVal tcType%,

ByVal bipolar%, ByVal avg%)
Turbo Pascal tbkTCSetup(nscan, cjcPosition, ntc, tcType:word; bipolar:byte;

avg:word):integer;
Parameters
uint nscan Number of readings in a scan.

Valid range: 1- 512
uint cjcPosition Position of CJC reading within a scan.

Valid range: 0 - (nscan-1)
2 -(nscan-1), if auto-zeroing is used.

uint ntc Number of thermocouples immediately following CJC.
Valid range: 1 - (nscan-cjcposition-1)

uint tcType Type of thermocouple (see table at end of chapter for valid types)
uint bipolar Zero for unipolar, non-zero for bipolar.
uint avg Type of averaging to be used.
Returns TerrTCE_PARAM - Parameter out of range

TerrTCE_TYPE - Invalid thermocouple type
TerrNoError - No Error

See Also tbkTCConvert, tbkTCSetupConvert
Program References None

tbkTCSetup sets up parameters for subsequent temperature conversions.

TempBook User’s Manual tbkCommand Reference (Standard API) 9-29

tbkTCSetupConvert
DLL Function int tbkTCSetupConvert(uint nscan,uint cjcPosition, uint ntc, uint

tcType,uchar bipolar,uint avg, uint *counts, uint scans, int *temp,);
C tbkTCSetupConvert(unsigned nscan, unsigned cjcPosition, unsigned ntc,

unsigned tcType, unsigned char bipolar, unsigned avg, unsigned _far *counts,
unsigned scans, int _far *temp, unsigned ntemp);

QuickBASIC BtbkTCSetupConvert% (ByVal nscan%, ByVal cjcPosition%, ByVal ntc%, ByVal
tcType%, ByVal bipolar%, ByVal avg%, counts%, ByVal scans%, temp%, ByVal
ntemp%)

Visual Basic VBtbkTCSetupConvert% (ByVal nscan%, ByVal cjcPosition%, ByVal ntc%, ByVal
tcType%, ByVal bipolar%, ByVal avg%, counts%(), ByVal scans%, temp%(), ByVal
ntemp%)

Turbo Pascal tbkTCSetupConvert(nscan, cjcPosition, ntc, tcType:word; bipolar:byte;
avg:word; counts:WordP; scans:word; temp:DataP; ntemp:word):integer;

Parameters
uint nscan The number of readings in a single scan.

Valid range: 1- 512
uint cjcPosition The position of the CJC reading within the scan.

Valid range: 0 - (nscan-1)
2 -(nscan-1), if auto-zeroing is used.

uint ntc The number of thermocouple readings that immediately follow the CJC reading within the scan.
Valid range: 1 - (nscan-cjcposition-1)

uint tcType The type of thermocouples being measured (see table at end of chapter for valid types)
uint bipolar Non-zero if the TempBook/66 is configured for bipolar readings.
uint avg The type of averaging to be performed: block, none or moving.
uint *counts The raw data from one or more scans.
uint scans The number of scans of raw data in counts.
int *temp The converted temperatures in tenths of a degree C.
uint ntemp The number of elements provided in the temp array (for error checking).
Returns TerrTCE_PARAM - Parameter out of range

TerrTCE_TYPE - Invalid thermocouple type
TerrNoError - No Error

See Also tbkTCSetup, tbkTCConvert
Program References None

tbkTCSetupConvert sets up and converts raw A/D readings into temperature readings.

tbkWtBit
DLL Function int tbkWtBit(uchar bitNum, uchar bitVal);
C tbkWtBit(unsigned char bitNum, unsigned char bitVal);
QuickBASIC BtbkWtBit% (ByVal bitNum%, ByVal bitVal%)
Visual Basic VBtbkWtBit% (bitNum%, bitVal%)
Turbo Pascal tbkWtBit(bitNum:byte; bitVal:byte):integer;
Parameters
uchar bitNum The bit number to assert/unassert

Valid values: 0 - 7
uchar bitVal A flag that if non-zero will assert the specified bit, if 0 the bit is unasserted
Returns TerrInvBitNum - Invalid bit number

TerrNoError - No error
See Also tbkWtByte, tbkRdByte, tbkRdBit
Program References

tbkWtBit sets or clears a single digital output bit.

9-30 tbkCommand Reference (Standard API) TempBook User’s Manual

tbkWtByte
DLL Function int tbkWtByte(uchar byteVal);
C tbkWtByte(unsigned char byteVal);
QuickBASIC BtbkWtByte% (ByVal digOut%)
Visual Basic VBtbkWtByte% (ByVal digOut%)
Turbo Pascal tbkWtByte(byteVal:byte):integer;
Parameters
uchar byteVal The value to write to the specified port

Valid values: 0 - 255 for 8-bit ports
 0-15 for 4-bit ports

Returns TerrNoError - No error
See Also tbkRdByte, tbkWtBit, tbkRdBit
Program References

tbkWtByte writes a byte to the 8-bit digital output port.

tbkWtCntr0
DLL Function int tbkWtCntr0(uint cntr0);
C tbkWtCntr0(unsigned cntr0);
QuickBASIC BtbkWtCntr0% (ByVal cntr0%)
Visual Basic VBtbkWtCntr0% (ByVal cntr0%)
Turbo Pascal tbkWtCntr0(cntr0:word):integer;
Parameters
uint cntr0 The value to write to the count down register of Counter 0

Valid values: 0 - 65535
Returns TerrNoError - No error
See Also tbkConfCntr0, tbkRdCntr0
Program References

tbkWtCntr0 loads the count down register of Counter 0. See tbkAdcConfCntr0 for various
applications of counter 0.

tbkZeroConvert
DLL Function tbkZeroConvert(uint *counts, uint scans);
C tbkZeroConvert(unsigned *counts, unsigned scans);
QuickBASIC BtbkZeroConvert% (counts%, ByVal scans%)
Visual Basic VBtbkZeroConvert% (counts%(), ByVal scans%)
Turbo Pascal tbkZeroConvert(counts:WordP; scans:word):integer;
Parameters
uint *counts The raw data from one or more scans.
uint scans The number of scans of raw data in the counts array.
Returns TerrZCInvParam - Invalid parameter value

TerrNoError - No error
See Also tbkZeroSetup, tbkZeroSetupConvert, tbkAutoZero
Program References None

The tbkZeroConvert function compensates one or more scans according the previously called
tbkZeroSetup function. This function will modify the array of data passed to it. See the
Software Calibration and Zero Compensation chapter for a complete description of zero
compensation.

TempBook User’s Manual tbkCommand Reference (Standard API) 9-31

tbkZeroSetup
DLL Function tbkZeroSetup(uint nscan, uint ZeroPosition, uint readingsPosition, uint

nReadings);
C tbkZeroSetup(unsigned nscan, unsigned zeroPos, unsigned readingsPos,

unsigned nReadings);
QuickBASIC BtbkZeroSetup% (ByVal nscan%, ByVal zeroPosition%, ByVal readingsPos%, ByVal

nReadings%)
Visual Basic VBtbkZeroSetup% (ByVal nscan%, ByVal zeroPosition%, ByVal readingsPos%,

ByVal nReadings%)
Turbo Pascal tbkZeroSetup(nscan:word; zeroPos:word; readingsPos:word;

nReadings:word):integer;
Parameters
uint nscan The number of readings in a single scan.
uint zeroPosition The position of the zero reading within the scan
uint
readingsPosition

The position of the readings to be zeroed within the scan.

uint nReadings The number of readings immediately following the zero reading that are sampled at the same gain as
the zero reading.

Returns TerrZCInvParam - Invalid parameter value
TerrNoError - No error

See Also tbkZeroConvert, tbkZeroSetupConvert, tbkAutoZero
Program References None

The tbkZeroSetup function configures the location of the shorted channel and the channels to be
zeroed within a scan, the size of the scan and the number of readings to zero. This function does not
do the conversion. A non-zero return value indicates an invalid parameter error. See the Software
Calibration and Zero Compensation chapter for a complete description of zero compensation.

tbkZeroSetupConvert
DLL Function tbkZeroSetupConvert(uint nscan, uint ZeroPosition, uint readingsPosition,

uint nReadings, uint *counts, uint scans);
C tbkZeroSetupConvert(unsigned nscan, unsigned zeroPos, unsigned readingsPos,

unsigned nReadings, unsigned *counts, unsigned scans);
QuickBASIC BtbkZeroSetupConvert% (ByVal nscan%, ByVal zeroPosition%, ByVal

readingsPos%, ByVal nReadings%, counts%, ByVal scans%)
Visual Basic VBtbkZeroSetupConvert% (ByVal nscan%, ByVal zeroPosition%, ByVal

readingsPos%, ByVal nReadings%, counts%(), ByVal scans%)
Turbo Pascal tbkZeroSetupConvert(nscan:word;zeroPos:word;readingsPos:word;nReadings:word;

counts:WordP;scans:word):integer;
Parameters
uint nscan The number of readings in a single scan.
uint zeroPosition The position of the zero reading within the scan
uint
readingsPosition

The position of the readings to be zeroed within the scan.

uint nReadings The number of readings immediately following the zero reading that are sampled at the same gain as
the zero reading.

uint *counts The raw data from one or more scans.
uint scans The number of scans of raw data in the counts array.
Returns TerrZCInvParam - Invalid parameter value

TerrNoError - No error
See Also tbkZeroSetup, tbkZeroConvert, tbkAutoZero
Program References None

For convenience, both the setup and convert steps can be performed with one call to
tbkZeroSetupConvert. This is useful when the zero compensation needs to be performed
multiple times because data was read from channels at different gains or polarities. See the Software
Calibration and Zero Compensation chapter for a complete description of zero compensation.

9-32 tbkCommand Reference (Standard API) TempBook User’s Manual

API Reference Tables
These tables provide information for programming with the TempBook/66 Application Programming
Interface. The tables are organized as follows:

API Parameter Reference Tables
Table Title Page
A/D Channel Descriptions 9-32
A/D Gain Definitions 9-32
A/D Trigger Source Definitions 9-32
Pretrigger Functions Trigger Source Definitions 9-33
Thermocouple Types 9-33
API Error Codes - C Languages 9-33
API Error Codes - QuickBASIC 9-34
API Error Codes - Turbo Pascal 9-35
API Error Codes - Visual Basic 9-36

A/D Channel Descriptions
A/D Channel Source
0 to 15* Analog input channels 0 to 15
16 CJC Channel
18 Shorted Channel
272 High-speed digital Inputs
*Note: In differential mode only channels 0 to 7 are valid.

A/D Gain Definitions
BASE UNIT
Description Value
TgainX1 0x00
TgainX2 0x10
TgainX5 0x20
TgainX10 0x30
TgainX20 0x11
TgainX50 0x21
TgainX100 0x31
TgainX200 0x32

TbkBiCJC 0x21
TbkBiTypeJ 0x31
TbkBiTypeK 0x31
TbkBiTypeT 0x32
TbkBiTypeE 0x21
TbkBiTypeN28 0x31
TbkBiTypeN14 0x31
TbkBiTypeS 0x32
TbkBiTypeR 0x32
TbkBiTypeB 0x32
TbkUniCJC 0x31
TbkUniTypeJ 0x32
TbkUniTypeK 0x32
TbkUniTypeT 0x32
TbkUniTypeE 0x31
TbkUniTypeN28 0x32
TbkUniTypeN14 0x32
TbkUniTypeS 0x32
TbkUniTypeR 0x32
TbkUniTypeB 0x32

A/D Trigger Source Definitions
Definition Value Trigger
TtsPacerClock 0x00 8254 Pacer Clock
TtsSoftware 0x10 Software
TtsTTLFall 0x20 External TTL falling edge
TtsTTLRise 0x30 External TTL rising edge

TempBook User’s Manual tbkCommand Reference (Standard API) 9-33

Pretrigger Functions Trigger Source Definitions
Definition Value Trigger
TtsAnalogFallNeg 0x40 Falling below a negative setpoint
TtsAnalogRiseNeg 0x50 Rising above a negative setpoint
TtsAnalogRisePos 0x60 Rising above a positive setpoint
TDtsAnalogFallPos 0x70 Falling below positive setpoint

Thermocouple
Types

Description Value
TbkTypeJ 18
TbkTypeK 19
TbkTypeT 20
TbkTypeE 21
TbkTypeN28 22
TbkTypeN14 23
TbkTypeS 24
TbkTypeR 25
TbkTypeB 26

API Error Codes - C Languages

Error Name
Error
Code Description

TerrNoError 0x00 No error
TerrBadChannel 0x01 Specified LPT channel was out-of-range
TerrNotOnLine 0x02 Requested TempBook is not on-line
TerrNoTempBook 0x03 TempBook is not on the requested channel
TerrBadAddress 0x04 Bad function address
TerrFIFOFull 0x05 FIFO Full detected, possible data corruption
TerrInvChan 0x10 Invalid analog input channel
TerrInvCount 0x11 Invalid count parameter
TerrInvTrigSource 0x12 Invalid trigger source parameter
TerrInvGain 0x14 Invalid channel gain parameter
TerrInvPort 0x17 Invalid port parameter
TerrInvChip 0x18 Invalid chip parameter
TerrInvBitNum 0x1A Invalid bit number parameter
TerrInvClock 0x1B Invalid clock parameter
TerrInvTod 0x1C Invalid time-of-day parameter
TerrInvGateCtrl 0x20 Invalid gate control parameter
TerrInvOutputCtrl 0x21 Invalid output control parameter
TerrInvInterval 0x22 Invalid interval parameter
TerrTypeConflict 0x23 An integer was passed to a function requiring a character
TerrMultBackXfer 0x24 A second background transfer was requested
TerrInvDiv 0x25 Invalid Fout divisor
TerrTCE_TYPE 0x26 TC type out-of-range
TerrTCE_TRANGE 0x27 Temperature out-of-CJC-range
TerrTCE_VRANGE 0x28 Voltage out-of-TC-range
TerrTCE_PARAM 0x29 Unspecified parameter value error
TerrTCE_NOSETUP 0x2A tbkTCConvert called before tbkTCSetup
TerrOverrun 0x2C A buffer overrun occurred
TerrZCInvParam 0x2D Invalid zero compensation parameter
TerrZCNoSetup 0x2E tbkZeroConvert called before tbkZeroSetup
TerrInvCalFile 0x2F Cannot open the specified calibration file
TerrMemLock 0x30 Cannot lock allocated memory from Windows
TerrMemHandle 0x31 Cannot get a memory handle from Windows
TerrNoPreTActive 0x32 No pre-trigger configured

9-34 tbkCommand Reference (Standard API) TempBook User’s Manual

API Error Codes - QuickBASIC

Error Name
Error
Code Description

CONST TerrNoError% &H00 No error
CONST TerrBadChannel% &H01 Specified LPT channel was out-of-range
CONST TerrNotOnLine% &H02 Requested TempBook is not on-line
CONST TerrNoTempBook% &H03 TempBook is not on the requested channel
CONST TerrBadAddress% &H04 Bad function address
CONST TerrFIFOFull% &H05 FIFO Full detected, possible data corruption
CONST TerrInvChan% &H10 Invalid
CONST TerrInvCount% &H11 Invalid count parameter
CONST TerrInvTrigSource% &H12 Invalid trigger source parameter
CONST TerrInvGain% &H14 Invalid channel gain parameter
CONST TerrInvPort% &H17 Invalid port parameter
CONST TerrInvChip% &H18 Invalid chip parameter
CONST TerrInvBitNum% &H1A Invalid bit number parameter
CONST TerrInvClock% &H1B Invalid clock parameter
CONST TerrInvTod% &H1C Invalid time-of-day parameter
CONST TerrInvGateCtrl% &H20 Invalid gate control parameter
CONST TerrInvOutputCtrl% &H21 Invalid output control parameter
CONST TerrInvInterval% &H22 Invalid interval parameter
CONST TerrTypeConflict% &H23 An integer was passed to a function requiring a character
CONST TerrMultBackXfer% &H24 A second background transfer
CONSTTerrInvDiv% &H25 Invalid Fout divisor
CONST TerrTCE.TYPE &H26 TC type out of range
CONST TerrTCE.TRANGE &H27 Temperature out-of-CJC-range
CONST TerrTCE.VRANGE &H28 Voltage out-of-TC-range
CONST TerrTCE.PARAM &H29 Unspecified parameter value error
CONST TerrTCE.NOSETUP &H2A tbkTCConvert called before tbkTCSetup
CONST TerrOverrun% &H2C A buffer overrun occurred
CONST TerrZCInvParam &H2D Invalid zero compensation parameter
CONST TerrZCNoSetup &H2E tbkZeroConvert called before tbkZeroSetup
CONST TerrInvCalFile &H2F Cannot open the specified calibration file
CONST TerrMemLock &H30 Cannot lock allocated memory from Windows
CONST TerrMemHandle &H31 Cannot get a memory handle from Windows
CONST TerrNoPreTActive &H32 No pre-trigger configured

TempBook User’s Manual tbkCommand Reference (Standard API) 9-35

API Error Codes - Turbo Pascal

Error Name
Error
Code Description

TerrNoError 0 No error
TerrBadChannel 1 Specified LPT channel was out-of-range
TerrNotOnLine 2 Requested TempBook is not on-line
TerrNoTempBook 3 TempBook is not on the requested channel
TerrBadAddress 4 Bad function address
TerrFIFOFull 5 FIFO Full detected, possible data corruption
TerrInvChan 16 Invalid
TerrInvCount 17 Invalid count parameter
TerrInvTrigSource 18 Invalid trigger source parameter
TerrInvGain 20 Invalid channel gain parameter
TerrInvPort 23 Invalid port parameter
TerrInvChip 24 Invalid chip parameter
TerrInvBitNum 26 Invalid bit number parameter
TerrInvClock 27 Invalid clock parameter
TerrInvTod 28 Invalid time-of-day parameter
TerrInvGateCtrl 32 Invalid gate control parameter
TerrInvOutputCtrl 33 Invalid output control parameter
TerrInvInterval 34 Invalid interval parameter
TerrTypeConflict 35 An integer was passed to a function requiring a character
TerrMultBackXfer 36 A second background transfer was requested
TerrInvDiv 37 Invalid Fout divisor
TerrTCE_TYPE 38 TC type out-of-range
TerrTCE_TRANGE 39 Temperature out-of-CJC-range
TerrTCE_VRANGE 40 Voltage out-of-TC-range
TerrTCE_PARAM 41 Unspecified parameter value error
TerrTCE_NOSETUP 42 tbkTCConvert called before tbkTCSetup
TerrNot Capable 43 TempBook not capable of function
TerrOverrun 44 A buffer overrun occurred
TerrZCInvParam 45 Invalid zero compensation parameter
TerrZCNoSetup 46 tbkZeroConvert called before tbkZeroSetup
TerrInvCalFile 47 Cannot open the specified calibration file
TerrMemLock 48 Cannot lock allocated memory from Windows
TerrMemHandle 49 Cannot get a memory handle from Windows
TerrNoPreTActive 50 No pre-trigger configured

9-36 tbkCommand Reference (Standard API) TempBook User’s Manual

API Error Codes - Visual Basic

Error Name
Error
Code Description

Global Const TerrNoError% &H00 No error
Global Const TerrBadChannel% &H01 Specified LPT channel was out-of-range
Global Const TerrNotOnLine% &H02 Requested TempBook is not on-line
Global Const TerrNoTempBook% &H03 TempBook is not on the requested channel
Global Const TerrBadAddress% &H04 Bad function address
Global Const TerrFIFOFull% &H05 FIFO Full detected, possible data corruption
Global Const TerrInvChan% &H10 Invalid
Global Const TerrInvCount% &H11 Invalid count parameter
Global Const TerrInvTrigSource% &H12 Invalid trigger source parameter
Global Const TerrInvGain% &H14 Invalid channel gain parameter
Global Const TerrInvPort% &H17 Invalid port parameter
Global Const TerrInvChip% &H18 Invalid chip parameter
Global Const TerrInvBitNum% &H1A Invalid bit number parameter
Global Const TerrInvClock% &H1B Invalid clock parameter
Global Const TerrInvTod% &H1C Invalid time-of-day parameter
Global Const TerrInvGateCtrl% &H20 Invalid gate control parameter
Global Const TerrInvOutputCtrl% &H21 Invalid output control parameter
Global Const TerrInvInterval% &H22 Invalid interval parameter
Global Const TerrTypeConflict% &H23 An integer was passed to a function requiring a character
Global Const TerrMultBackXfer% &H24 A second background transfer
Global Const TerrInvDiv% &H25 Invalid Fout divisor
Global Const TerrTCE_TYPE% &H26 TC type out-of-range
Global Const TerrTCE_TRANGE% &H27 Temperature out-of-CJC-range
Global Const TerrTCE_VRANGE% &H28 Voltage out-of-TC-range
Global Const TerrTCE_PARAM% &H29 Unspecified parameter value error
Global Const TerrTCE_NOSETUP% &H2A tbkTCConvert called before tbkTCSetup
Global Const TerrOverrun% &H2C A buffer overrun occurred
Global Const TerrZCInvParam &H2D Invalid zero compensation parameter
Global Const TerrZCNoSetup &H2E tbkZeroConvert called before tbkZeroSetup
Global Const TerrInvCalFile &H2F Cannot open the specified calibration file
Global Const TerrMemLock &H30 Cannot lock allocated memory from Windows
Global Const TerrMemHandle &H31 Cannot get a memory handle from Windows
Global Const TerrNoPreTActive &H32 No pre-trigger configured

Enhanced API Programming Models (TempBook) 10

TempBook User’s Manual Enhanced API Programming Models (TempBook) 10-1

Overview
The enhanced Application Programming Interface (API) allows you to create custom software to satisfy
your TempBook data acquisition requirements. Two chapters explain the enhanced API: this chapter gives
you the basic concepts needed to write effective programs, and chapter 11 describes the API functions in
detail. This chapter explains how to combine the API functions into useful routines and is divided into 3
parts:

• Data Acquisition Environment outlines related concepts and defines system capabilities the
programmer must work with (the API, hardware features, and signal management).

• Programming Models explains the sequence and type of operations necessary for data acquisition.
These models provide the software building blocks to develop more complex and specialized
programs. The description for each model has a flowchart and example program excerpt.

• Summary Guide of Selected API Functions is an easy-to-read table that describes when to use the
basic API functions.

Note: The TempBook enhanced API is a subset of the DaqX API which provides a common interface for
32-bit data acquisition applications (TempBook, WaveBook, DaqBook, DaqBoard, Daq PC-Card,
etc). This manual describes the commands that pertain to the TempBook.

Data Acquisition Environment
In order to write effective data acquisition software, programmers must understand:

• Software tools (the API documented in this manual and the programming language—you may need to
consult documentation for your chosen language)

• Hardware capabilities and constraints
• General concepts of data acquisition and signal management

Application Programming Interface (API)
The API includes all the software functions needed for building a data acquisition system with the hardware
described in this manual. Chapter 11 (daqCommand Reference—Enhanced API) supplies the details about
how each function is used (parameters, hardware applicability, etc). In addition, you may need to consult
your language and computer documentation.

Enhanced vs Standard API
Major differences between the enhanced and standard APIs were described in the introductory chapter
(Programmer’s Guide). Language support varies as follows:

• The enhanced API (32-bit only) accommodates C, Visual Basic, and Delphi.
• The standard API (16-bit only) accommodates C, QuickBASIC, Visual Basic, and Turbo Pascal 7.

Note: Coding for the enhanced and standard API cannot be used together; enhanced and standard models
are slightly different (this chapter is for the enhanced API models; chapters 6 to 8 demonstrate examples
using the standard API).

Hardware Capabilities and Constraints
To program the system effectively, you must understand your hardware capabilities. Obviously you cannot
program the hardware to perform beyond its design and specifications, but you also want to take full
advantage of the system’s power and features. You may need to refer to sections that describe your
hardware’s capability. In addition, you may need to consult your computer documentation. In some cases,
you may need to verify the hardware setup, use of channels, and signal conditioning options (some
hardware devices have jumpers and DIP switches that must match the programming, especially as the
system evolves).

10-2 Enhanced API Programming Models (TempBook) TempBook User’s Manual

Signal Environment
Several data acquisition concepts are listed here; you must apply these concepts as needed in your situation.
Some of these concepts include:

• Device and parameter identification. Refer to the related reference tables in chapter 11.
• Scan rates and sequencing. With multiple scans, the time between scans becomes a parameter.

This time can be a constant or can be dependent upon a trigger.
• Triggering options. Triggering starts the A/D conversion. The trigger can be an external analog or

TTL trigger or a program-controlled software trigger. Refer to the trigger functions in chapter 11.
• Foreground/background. Foreground transfer routines require the entire transfer to occur before

returning control to the application program. Background routines start the A/D acquisition and
return control to the application program before the transfer occurs. Data is transferred while the
application program is running. Data will be transferred to the user memory buffer during program
execution in 1 sample or 2048 sample blocks, depending on the configuration. The programmer must
determine what tasks can proceed in the background while other tasks perform in the foreground and
how often the status of the background operations should be checked.

Parameters in the various A/D routines include: number of channels, number of scans, start of conversion
triggering, timing between scans, and mode of data transfer. Channels sampled in a scan can be consecutive
or non-consecutive with the same or different gains. The scan sequence makes no distinction between local
and expansion channels.

Basic Models
This section outlines basic programming steps commonly used for data acquisition. Consider the models as
building blocks that can be put together in different ways or modified as needed. As a general tutorial,
these examples use Visual Basic since most programmers know BASIC and can translate to other languages
as needed. The enhanced API programming models discussed in this chapter include:

Model Type Model Name Page
Configuration Initialization and Error Handling 10-3
Acquisition Foreground Acquisition with One-Step Commands

Temperature Acquisition Using One-Step Commands
Counted Acquisition Using Linear Buffers
Indefinite Acquisition, Direct-To-Disk Using Circular Buffers
Multiple Hardware Scans, Software Triggering
Background Acquisition
Temperature Acquisition Using TC Conversion Functions

10-5
10-7
10-9
10-11
10-14
10-16
10-18

Data Handling Double Buffering
Direct-to-Disk Transfers
Transfers With Driver-Allocated Buffers

10-21
10-23
10-26

TempBook User’s Manual Enhanced API Programming Models (TempBook) 10-3

Initialization and Error Handling
This section demonstrates how to initialize the Daq* and use
various methods of error handling. Most of the example
programs use similar coding as detailed here. Functions
used include:

• • VBdaqOpen&(daqName$)
• • VBdaqSetErrorHandler&(errHandler&)
• • VBdaqClose&(handle&)

All Visual Basic programs should include the DaqX.bas file
into their project. The DaqX.bas file provides the necessary
definitions and function prototyping for the DAQX driver
DLL.

handle& = VBdaqOpen&(“TempBook0”)
ret& = VBdaqClose&(handle&)

The Daq* device is opened and initialized with the daqOpen function. daqOpen takes one parameter—
the name of the device to be opened. The device name information can be accessed or changed via the
Daq* Configuration utility located in the operating system’s Control Panel. The daqOpen call, if
successful, will return a handle to the opened device. This handle may then be used by other functions to
configure or perform other operations on the device. When operations with the device are complete, the
device may then be closed using the daqClose function. If the device could not be found or opened,
daqOpen will return -1.

The DAQX library has a default error handler defined upon loading. However; if it is desirable to change
the error handler or to disable error handling, then the daqSetErrorHandler function may be used to
setup an error handler for the driver. In the following example the error handler is set to 0 (no handler
defined) which disables error handling.

ret& = VBdaqSetErrorHandler&(0&)

If there is a Daq* error, the program will continue. The function’s return value (an error number or 0 if no
error) can help you debug a program.

If (VBdaqOpen&(“TempBook0”) < 0) Then
 “Cannot open “TempBook0”

Daq* functions return daqErrno&.

Print “daqErrno& : ”; HEX$(daqErrno&)
End If

The next statement defines an error handling routine that frees us from checking the return value of every
Daq* function call. Although not necessary, this sample program transfers program control to a user-
defined routine when an error is detected. Without a Daq* error handler, Visual Basic will receive and
handle the error, post it on the screen and terminate the program. Visual Basic provides an integer variable
(ERR) that contains the most recent error code. This variable can be used to detect the error source and
take the appropriate action. The function daqSetErrorHandler tells Visual Basic to assign ERR to a
specific value when a Daq*error is encountered. The following line tells Visual Basic to set ERR to 100
when a Daq*error is encountered. (Other languages work similarly; refer to specific language
documentation as needed.)

handle& = VBdaqOpen&(“TempBook0”)
ret& = VBdaqSetErrorHandler&(handle&, 100)

 On Error GoTo ErrorHandler

The On Error GoTo command in Visual Basic allows a user-defined error handler to be provided, rather
than the standard error handler that Visual Basic uses automatically. The program uses On Error GoTo
to transfer program control to the label ErrorHandler if an error is encountered.

Daq* errors will send the program into the error handling routine. This is the error handler. Program
control is sent here on error.

ErrorHandler:

10-4 Enhanced API Programming Models (TempBook) TempBook User’s Manual

 errorString$ = "ERROR in ADC1"
 errorString$ = errorString$ & Chr(10) & "BASIC Error :" + Str$(Err)
 If Err = 100 Then errorString$ = errorString$ & Chr(10) & "DaqBook Error
: " + Hex$(daqErrno&)

 MsgBox errorString$, , "Error!"

End Sub

TempBook User’s Manual Enhanced API Programming Models (TempBook) 10-5

Foreground Acquisition with One-Step Commands
This section shows the use of several one-step analog input
routines. These commands are easier to use than low-level
commands but less flexible in scan configuration. These
commands provide a single function call to configure and
acquire analog input data. This example demonstrates the
use of the 4 Daq*’s one-step ADC functions. Functions
used include:

• • VBdaqAdcRd&(handle&,chan&, sample%,
gain&)

• • VBdaqAdcRdN&(handle&,chan&, Buf%(),
count&, trigger%, level%, freq!,
gain&,flags&)

• • VBdaqAdcRdScan&(handle&,startChan&,
endChan&, Buf%(), gain&, flags&)

• • VBdaqAdcRdScanN&(handle&,startChan&,
endChan&, Buf%(), count&,
triggerSource&, level%, freq!, gain&,
flags&)

This program will initialize the Daq* hardware, then take
readings from the analog input channels in the base unit (not
the expansion cards). First, some constants need to be
defined and variables dimensioned.

Const freq! = 1000! ‘1000Hz sample rate
Const gain& = DgainX1& ‘gain of x1
Const flags& = DafAnalog&+DafUnipolar& ‘unipolar mode on
Const scans& = 9 ‘number of scans to acquire
Const channels& = 8 ‘number of channels to scan
Const rising& = DatdRisingEdge ‘XXXX I have no idea
Const HYSTERESIS& = 0.1 ‘with a hysteresis of .1
Dim buf%(scans& * channels&) ‘array buffer to hold data
Dim handle& ‘handle for TempBook device
Dim i&, j& ‘counter variables
Dim sample% ‘hold a single reading
Dim ret& ‘function return value

The following code assumes that the Daq* device has been successfully opened and the handle& value is
a valid handle to the device. All the following one-step functions define the channel scan groups to be
bipolar input channels. Specifying this configuration uses the DafAnalog and the DafUnipolar values
in the flags parameter. The flags parameter is a bit-mask field in which each bit specifies the
characteristics of the channel(s) specified. In this case, the DafAnalog and the DafUnipolar values
are added together to form the appropriate bit mask for the specified flags parameter.

The next line requests 1 reading from 1 channel with a gain of ×1. The gain& constant is defined as
DgainX1&, defined constant from DaqX.bas and included at the beginning of this program. Likewise, the
flags& constant parameter is defined to be the sum of the DafAnalog and DafUnipolar flags, which are
also defined in DaqX.bas.

ret& = VBdaqAdcRd&(handle& 1, sample%, gain&, flags&)
Print Format$“& ####”; “Result of AdcRd:”; sample%(0)

The next line requests 10 readings from channel 1 at a gain of ×1, using immediate triggering at 1 kHz.

ret& = VBdaqAdcRdN&(handle&,1, buf%(), scans&, DatsImmediate&, rising&, 0!,
freq!, gain&, flags&)

Print “Results of AdcRdN: ”;
For x& = 0 To 9
 Print Format$ “#### ”; buf%(x&);

Next x&

The program will then collect one sample of channels 1 through 8 using the VBdaqAdcRdScan function.

10-6 Enhanced API Programming Models (TempBook) TempBook User’s Manual

ret& = VBdaqAdcRdScan&(handle&,1, channels&, buf%(), DgainX1&,
DafAnalog&+DafUnipolar&)

Print “Results of AdcRdscan:”
For x& = 0 To 7
Print Format$“& # & ####”; “Channel:”; buf%(x); “Data:”; buf%(x)

Next x&: Print

Finally, the program will collect 9 scans from channels 1 through 7 with an immediate trigger, then display
the results.

ret& = VBdaqAdcRdScanN& (handle&, 1, channels&, buf%(), scans&,
DatsImmediate&, rising&, 0!, freq!, gain&, flags&)

For i& = 0 To channels&-1
Print Format$“& # & ####”; “Channel:”; i&+1; “Data:”;

 For j& = 0 To scans&-1
 print Tab(j&*7+17); InttoUint(buf%(j&*channels&+i&));

 next j
 print
next i&

Now to close the device when it’s no longer needed:

ret& = VBdaqAdcClose(handle&)

TempBook User’s Manual Enhanced API Programming Models (TempBook) 10-7

Temperature Acquisition Using One-Step Commands
This example demonstrates the Enhanced API’s high-level one-step routines to
read thermocouple input from the TempBook/66 device. These functions
combine scan sequencer setup, ADC data collection, and thermocouple
linearization. Functions used include:

• • VBdaqSetDefaultHandler&(handler&)
• • VBdaqGetDeviceCount&(deviceCount&)
• • VBdaqGetDeviceList&(deviceList&, deviceProps)
• • VBdaqOpen&(daqName$)
• • VBdaqAdcSetDataFormat&(handle&, rawFormat&,

postProcFormat&)
• • VBdaqAdcRd&(handle&,chan&, sample%, gain&, flags&)
• • VBdaqAdcRdScan&(handle&,startChan&, endChan&, buf%,

gain&, flags&)
• • VBdaqAdcRdScanN&(handle&,chan&, buf%, scanCount&,

triggerSource&, rising&, level%, freq!, gain&, flags&)
• • VBdaqAdcRdN&(handle&,chan&, startChan&, endChan&, buf%,

scanCount&, triggerSource&, rising&, level%, freq!,
gain&, flags&)

• • VBdaqClose&(handle&,daqEvent&)

Const Scans& = 5000
Const Level% = 0
Const Rising& = 0
Const Start& = 0
Const End& = 0
Const Freq! = 6000.0
Const Gain& = TbkBiTypeJ&
Const Flags& = DafBipolar& + DafDifferential& + DafTcTypeJ&
Const Chans& = End& - Start&+1

Dim buf%(80), handle&, ret&, flags&
Dim I&, j&, deviceCount&, handle&, deviceIndex&
Dim temp%, temps%(Scans&*Chans&)
Dim sum!, totals!(Chans&)
Dim ret&

First, we need to open the TempBook/66 device. This example uses a device named “TempBook0”. The
device name must be a valid device name for a configured device.

handle& = VBdaqOpen&(“TempBook0”)

Set the raw data format to native and the post-processing data format to temperature in tenths of a degree C.
The post-processing data format controls the format of the data returned by the one-step acquisition
functions such as daqAdcRd. In this case, daqAdcRd returns temperatures rather than raw ADC
readings.

ret& = VBdaqAdcSetDataFormat& (handle&, DardfNative&, DappdfTenthsDegC&)

The following statement retrieves a single ADC sample from a type J thermocouple on channel Start&
and converts the reading to a temperature. The temperature is returned in the sample% parameter and is a
16-bit quantity which represents tenths of degrees C.

ret& = VBdaqAdcRd& (handle&, Start&, temp%, TbkBiTypeJ, Flags&)

Now the results for the single-sample read are displayed:

Print "Results of daqAdcRd for channel “, Start&, “: (single reading)"
Print "Temperature: “, temp/10.0, “C"

The next statement retrieves Scans&(5000) number of samples from a type J thermocouple on channel
Start& and converts the readings to a single temperature using block averaging. The trigger source is set
to DatsImmediate& so the scans will be acquired immediately. Again, the temperatures are returned as
16-bit words representing tenths of degrees C.

10-8 Enhanced API Programming Models (TempBook) TempBook User’s Manual

ret& = VBdaqAdcRdN(handle&, Start&, temps%(), Scans&, DatsImmediate&,
Rising&, Level&, Freq!, TbkBiTypeJ&, Flags&)

The averaging of the temperature values into a single temperature value is performed through the following:

 sum! = 0.0
 For I& =0 To Scans&
 sum! = sum! + temps%(I&)
 Next I&
 sum! = sum!/Scans&

The averaged temperature can now be printed out.

 Print "Results of daqAdcRdN: (“,Scans&,” readings averaged)"
 Print "Channel”, Start&, “ Temperature: “, sum!/10.0, “C”

Next, a single scan will be retrieved for a multiple channel scan configuration. The following statement
configures the scan from the Start& (0) to the End& (0) and configures each channel as a type J
thermocouple. The returned values for each channel will be placed in the temps% array and will be 16-bit
words representing tenths of degrees C.

 ret& = VBdaqAdcRdScan& (handle&, Start&, End&, temps%(), TbkBiTypeJ&,
Flags&)

 Print "Result of daqAdcRdScan (Single Readings) : "
 For I& = Start& To End&
 Print "Channel “, I&,” Temperature “, temps%(I&)/10.0, “ C “
 Next I&

Finally, we will retrieve multiple scans for a multiple-channel scan configuration. The scan will be defined
using type J thermocouples for each channel in the scan group configuration. The scan group will start at
Start& (0) and go to End& (0); and all channels will be type J thermocouples. The returned
values will be placed in the temps% array and will be 16-bit words representing tenths of degrees C.

 ret& = VBdaqAdcRdScanN& (handle& , Start&, End& , temps%, Scans&,
DatsImmediate&, Rising&, Level&, Freq!, Gain&, Flags&)

The following code will average all samples collected for each channel and display the results.

 ‘ Zero the totals
 For I& = Start& To End&+1
 totals!(I&) = 0.0
 Next I&

 ‘ Average the temperatures
 For I& = 0 To Scans&
 For j& = Start& To End&
 totals!(j&) = totals!(j&) + temps%(I&*Chans& + j&)
 Next j&
 Next I&

 ‘ Divide the totals
 For I& = 0 To Chans&
 totals!(I&) = totals!(I&)/Scans&
 Next I&

 ‘ Print "Results of daqAdcRdScanN: "
 For I& = 0 To Scans&
 Print "Channel”, I&, “ Temperature: “, totals!(I&)/10.0, “C”
 Next I&

 ‘ Close the TempBook/66
 ret& = VBdaqClose&(handle&)

TempBook User’s Manual Enhanced API Programming Models (TempBook) 10-9

Counted Acquisitions Using Linear Buffers
This section sets up an acquisition that collects
post-trigger A/D scans. This particular example
demonstrates the setting up and collection of a
fixed-length A/D acquisition in a linear buffer.

First, the acquisition is configured by setting up
the channel scan group configuration, the
acquisition frequency, the acquisition trigger and
the acquisition mode. When configured, the
acquisition is then armed by calling the
daqAdcArm function.

At this point, the Daq* device trigger is armed
and A/D acquisition will begin upon trigger
detection. If the trigger source has been
configured to be DatsImmediate&, A/D data
collection will begin immediately.

This example will retrieve 10 samples from
channels 0 through 7, triggered immediately with
a 1000 Hz sampling frequency and unity gain.
Functions used include:

• • VBdaqAdcSetMux&(handle&,
startChan&, endChan&, gain&,
flags&)

• • VBdaqAdcSetFreq&(handle&,freq!)
• • VBdaqAdcSetTrig&(handle&, triggerSource&, rising&, level%,

hysteresis%,channel&)
• • VBdaqAdcSetAcq&(handle&,mode&,preTrigCount&,postTrigCount&)
• • VBdaqAdcTransferSetBuffer&(handle&,buf%(), scanCount&, transferMask&)
• • VBdaqAdcTransferStart&(handle&)
• • VBdaqAdcWaitForEvent&(handle&,daqEvent&)

This program will initialize the Daq* hardware, then take readings from the analog input channels in the
base unit (not the expansion cards). The functions used in this program are of a lower level than those used
in the previous section and provide more flexibility.

Const freq!=1000!
Const scans&=10
Dim buf%(BLOCK&*channels&), handle&, ret&, flags&

where

const block& = 6 and
const channels& = 8

The acquisition mode must be configured as a fixed-length acquisition with no pre-trigger scan data and 10
scans of post-trigger scan data. The mode is set to DaamNShot& to configure a fixed-length acquisition
that will terminate automatically upon the satisfaction of the post-trigger count of 10 (the value of
scans&).

ret& = VBdaqAdcSetAcq&(handle&,DaamNShot&, 0, scans&)

The following function defines the channel scan group. The function specifies a channel scan group from
channel 1 through 8 with all channels being analog unipolar input channels with a gain of ×1. Specifying
this configuration uses DgainX1 in the gain parameter and the DafAnalog and the DafUnipolar
values in the flags parameter. The flags parameter is a bit-mask field in which each bit specifies the
characteristics of the specified channel(s). In this case, the DafAnalog and the DafUnipolar values
are added together to form the appropriate bit mask for the specified flags parameter.

ret& = VBdaqAdcSetMux&(handle&,1, channels&, DgainX1&,
DafAnalog&+DafUnipolar&)

Next, set the internal sample rate to 1 kHz.

10-10 Enhanced API Programming Models (TempBook) TempBook User’s Manual

ret& = VBdaqAdcSetFreq&(handle&,freq!)

The sample rate will not be exactly 1 kHz; the actual frequency can be checked if necessary by:

ret& = VBdaqAdcGetFreq(handle&, freq!)
The “actual” frequency set will be stored in freq after the function call returns.

The acquisition begins upon detection of the trigger event. The trigger event is configured with
daqAdcSetTrig. The next line defines the trigger event to be the software trigger source which will
start the acquisition upon a call to VBdaqAdcSoftTrig(). The variable DatsSoftware& is a
constant defined in DaqX.bas. Since the trigger source is configured as software, the other trigger
parameters are not needed.

ret& = VBdaqAdcSetTrig&(handle&,DatsSoftware&, 0, 0, 0, 0)

A buffer now is configured to hold the A/D data to be acquired. Since this is to be a fixed-length transfer to
a linear buffer, the buffer cycle mode should be turned off with DatmCycleOff&. For efficiency, block
update mode is specified with DatmUpdateBlock&. The buffer size is set to 10 scans. Note: the user-
defined buffer must have been allocated with sufficient storage to hold the entire transfer prior to invoking
the following line.

ret& = VBdaqAdcTransferSetBuffer&(handle&,buf%(), 10,
DatmUpDateBlock&+DatmCycleOff&)

With all acquisition parameters configured, the acquisition can now be armed. Once armed, the acquisition
will begin immediately upon detection of the trigger event. As in the case of the software trigger, the
acquisition will begin immediately upon execution of the daqAdcSoftTrig()function.

ret& = VBdaqAdcArm&(handle&)

After setting up and arming the acquisition, the data is ready to be collected. The following line initiates an
A/D transfer from the TempBook/Daq* device to the defined user buffer which will begin after the trigger
event is satisfied (upon the completion of the daqAdcSoftTrig() function call).

ret& = VBdaqAdcTransferStart&(handle&)

Now the trigger will start the transfer:

ret& = VBdaqAdcSoftTrig(handle&)
Wait for the transfer to complete in its entirety, then proceed with normal application processing.
This can be accomplished with the daqWaitForEvent command. The daqWaitForEvent allows the
application processing to become blocked until the specified event has occurred. DteAdcDone, indicates
that the event to wait for is the completion of the transfer.

ret& = VBdaqWaitForEvent(handle&,DteAdcDone&)

At this point, the transfer is complete; all data from the acquisition is available for further processing.

Print "Results of Transfer"
For i& = 0 To 10
 Print "Scan "; Format$(Str$(i& + 1), "00"); " -->";
 For j& = 0 To channels& - 1
 Print Format$(IntToUint&(buf%(j&)), "00000"); " ";
 Next j&
 Print
Next i&
Print "R"

TempBook User’s Manual Enhanced API Programming Models (TempBook) 10-11

Indefinite Acquisition, Direct-To-Disk Using Circular Buffers
This program demonstrates the use of circular buffers in cycle mode to collect analog input data directly to
disk. In cycle mode, this data transfer can continue indefinitely. When the transfer reaches the end of the
physical data array, it will reset its array pointer
back to the beginning of the array and continue
writing data to it. Thus, the allocated buffer
can be used repeatedly like a FIFO buffer.

Unlike the Standard API, the Enhanced API has
built-in direct-to-disk functionality. Therefore,
very little needs to be done by the application
to configure direct-to-disk operations.

First, the acquisition is configured by setting up
the channel scan group configuration, the
acquisition frequency, the acquisition trigger
and the acquisition mode. Once configured, the
transfer to disk is set up and the acquisition is
then armed by calling the daqAdcArm
function.

At this point, the Daq* device trigger is armed
and A/D acquisition to disk will begin
immediately upon trigger detection.

This example will retrieve an indefinite amount
of scans for channels 0 through 7, triggered via
software with a 3000 Hz sampling frequency
and unity gain. Functions used include:

• • VBdaqAdcSetScan&(handle&,
startChan&, endChan&, gain&,
flags&)

• • VBdaqAdcSetFreq&(handle&,freq!
)

• • VBdaqAdcSetTrig&(handle&,
triggerSource&, rising&,
level%, hysteresis%,channel&)

• • VBdaqAdcSetAcq&(handle&,mode&,
preTrigCount&,postTrigCount&)

• • VBdaqAdcTransferSetBuffer&(han
dle&,buf%(), scanCount&,
transferMask&)

• • VBdaqAdcTransferStart&(handle&)
• • VBdaqAdcTransferGetStat&(handle&,status&,retCount&)
• • VBdaqAdcWaitForEvent&(handle&,daqEvent&)
• • VBdaqAdcSetDiskFile&(handle&,filename$,openMode&,preWrite&)

This program will initialize the Daq* hardware, then take readings from the analog input channels in the
base unit (not the expansion cards) and store them to disk automatically. The following lines demonstrate
channel scan group configuration using the daqAdcSetScan command. Note: flags may be channel-
specific.

Dim handle&, ret&, channels&(8), gains&(8) flags&(8)
Dim buf%(80000), active&, count&
Dim bufsize& = 10000 ‘ In scans

10-12 Enhanced API Programming Models (TempBook) TempBook User’s Manual

' Define arrays of channels and gains : 0-7 , unity gain
For x& = 0 To 7
 channels&(x&) = x&
 gains&(x&) = DgainX1&

 flags&(x&) = DafAnalog& + DafSingleEnded& + DafUnipolar&
Next x&

' Load scan sequence FIFO
ret& = VBdaqAdcSetScan&(handle&,channels&(), gains&(), flags&(), 8)

Next, set the internal sample rate to 3 kHz.

ret& = VBdaqAdcSetFreq&(handle&,3000!)

The acquisition mode needs to be configured to be fixed-length acquisition with no pre-trigger scan data
and 10 scans of post-trigger scan data. The mode is set to DaamInfinitePost&, which will configure
the acquisition as having indefinite length and, as such, will be terminated by the application. In this mode,
the pre- and post-trigger count values are ignored.

ret& = VBdaqAdcSetAcq&(handle&,DaamInfinitePost&, 0, 0)

The acquisition begins upon detection of the trigger event. The trigger event is configured with
daqAdcSetTrig. The next line defines the trigger event to be the immediate trigger source which will
start the acquisition immediately. The variable DatsSoftware& is a constant defined in DaqX.bas.
Since the trigger source is configured as immediate, the other trigger parameters are not needed.

ret& = VBdaqAdcSetTrig&(handle&,DatsSoftware&, 0, 0, 0, 0)

A buffer now is configured to hold the A/D data to be acquired. This buffer is necessary to hold incoming
A/D data while it is being prepared for disk I/O. Since this is to be an indefinite-length transfer to a circular
buffer, the buffer cycle mode should be turned on with DatmCycleOn&. For efficiency, block update
mode is specified with DatmUpdateBlock&. The buffer size is set to 10,000 scans. The buffer size
indicates only the size of the circular buffer, not the total number of scans to be taken.

ret& = VBdaqAdcTransferSetBuffer&(handle&,buf%(), bufsize&,
DatmUpDateBlock&+DatmCycleOn&)

Now the destination disk file is configured and opened. For this example, the disk file is a new file to be
created by the driver. After the following line has been executed, the specified file will be opened and
ready to accept data.

ret& = VBdaqAdcSetDiskFile&(handle&,”c:dasqdata.bin”, DaomCreateFile&, 0)

With all acquisition parameters being configured and the acquisition transfer to disk configured, the
acquisition can now be armed. Once armed, the acquisition will begin immediately upon detection of the
trigger event. As in the case of the immediate trigger, the acquisition will begin immediately upon
execution of the daqAdcArm function.

ret& = VBdaqAdcArm&(handle&)

After setting up and arming the acquisition, data collection will begin upon satisfaction of the trigger event.
Since the trigger source is software, the trigger event will not take place until the application issues the
software trigger event. To prepare for the trigger event, the following line initiates an A/D transfer from the
Daq* device to the defined user buffer and, subsequently, to the specified disk file. No data is transferred at
this point, however.

ret& = VBdaqAdcTransferStart&(handle&)

The transfer has been initiated, but no data will be transferred until the trigger event occurs. The following
line will signal the software trigger event to the driver; then A/D input data will be transferred to the
specified disk file as it is being collected.

ret& = VBdaqAdcSoftTrig&(handle&)

Both the acquisition and the transfer are now currently active. The transfer to disk will continue indefinitely
until terminated by the application. The application can monitor the transfer process with the following
lines of code:

acqTermination& = 0
Do
 ‘ Wait here for new data to arrive

TempBook User’s Manual Enhanced API Programming Models (TempBook) 10-13

 ret& = VBdaqWaitForEvent(handle&,DteAdcData&)

 ‘ New data has been transferred - Check status
 ret& = VBdaqAdcTransferGetStat&(handle&,active&,retCount&)

 ‘ Code may be placed here which will process the buffered data or
 ‘ perform other application activities.
 ‘
 ‘ At some point the application needs to determine the event on which
 ‘ the direct-to-disk acquisition is to be halted and set the
 ‘ acqTermination flag.

Loop While acqTermination& = 0

At this point the application is ready to terminate the acquisition to disk. The following line will terminate
the acquisition to disk and will close the disk file.

ret& = VBdaqAdcDisarm&(handle&)

The acquisition as well as the data transfer has been stopped. We should check status one more time to get
the total number of scans actually transferred to disk.

ret& = VBdaqAdcTransferGetStat(handle&,active&,retCount&)

The specified disk file is now available. The retCount& parameter will indicate the total number of
scans transferred to disk.

10-14 Enhanced API Programming Models (TempBook) TempBook User’s Manual

Multiple Hardware Scans, Software Triggering
This model takes multiple scans from several channels. The functions used
here are of a lower level than the one-step functions, and more control is
allowed over the acquisition. This program exemplifies this flexibility by
individually configuring the channels and by explicitly setting up the
transfer buffer.

First, the acquisition is configured by setting up the channel scan group
configuration, the acquisition frequency, the acquisition trigger and the
acquisition mode. Once configured, the transfer is set up and the
acquisition is then armed by calling the daqAdcArm function.

At this point, the TempBook/Daq* device trigger is armed, and A/D
acquisition will begin immediately upon trigger detection.

This example will retrieve 10 scans for channels 0, 5, and 8, triggered via
software with a 3000 Hz sampling frequency and unity gain. Functions
used include:

• • VBdaqAdcSetScan&(handle&, startChan&, endChan&,
gain&, flags&)

• • VBdaqAdcSetFreq&(handle&,freq!)
• • VBdaqAdcSetTrig&(handle&, triggerSource&, rising&,

level%, hysteresis%,channel&)
• • VBdaqAdcSetAcq&(handle&,mode&,preTrigCount&,postTri

gCount&)
• • VBdaqAdcTransferSetBuffer&(handle&,buf%(),

scanCount&, transferMask&)
• • VBdaqAdcTransferStart&(handle&)
• • VBdaqAdcTransferGetStat&(handle&,status&,retCount&)
• • VBdaqAdcWaitForEvent&(handle&,daqEvent&)

This program will initialize the hardware, then take readings from the analog input channels in the base unit
(not the expansion cards). The following lines demonstrate channel scan group configuration using the
daqAdcSetScan command. Note: flags may be channel-specific.

Const freq! = 3000
Const scans& = 10
Const channels& = 3
Dim buf%(scans& * channels&)
Dim chans&(channels&), gains&(channels&), flags&(channels&)

Now set up the desired channels and their individual gains and flags.
chans&(0) = 0 ' high speed digital channel
chans&(1) = 5 ' analog channel 5
chans&(2) = 8 ' analog channel 8
 ' Channel gains and flags setting
 For i& = 0 To channels& - 1
 gains&(i&) = DgainX1& ' unity gain
 flags&(i&) = DafAnalog& + DafSingleEnded& + DafUnipolar&
 Next i&

Open the device, and set up the error handler. For simplicity, the error handler is not defined explicitly.
Refer to Example 1 for more information.

handle& = VBdaqOpen("TempBook0")
ret& = VBdaqSetErrorHandler(handle&, 100)
On Error GoTo ErrorHandlerADC3

Now set the scan configuration:
ret& = VBdaqAdcSetScan&(handle&,chans&(), gains&(), flagss&(), channels&)

Next, set the internal sample rate to 3 kHz.
ret& = VBdaqAdcSetFreq&(handle&,3000!)

The acquisition mode needs to be configured to be a fixed-length acquisition with no pre-trigger scan data
and 10 scans of post-trigger scan data. The mode is set to DaamNShot&, which will configure the
acquisition as having finite length and, as such, will be terminated when the post-trigger count has been
satisfied. Once finished, the acquisition is automatically disarmed.

ret& = VBdaqAdcSetAcq&(handle&,DaamNShot&, 0, scans&)

TempBook User’s Manual Enhanced API Programming Models (TempBook) 10-15

The acquisition begins upon detection of the trigger event. The trigger event is configured with
daqAdcSetTrig. The next line defines the trigger event to be the immediate trigger source which will
start the acquisition immediately. The variable DatsSoftware& is a constant defined in DaqX.bas.
Since the trigger source is configured as software, the other trigger parameters are not needed.

ret& = VBdaqAdcSetTrig&(handle&,DatsSoftware&, 0, 0, 0, 0)

A buffer now is configured to hold the A/D data to be acquired. Since a circular buffer will not be used, the
buffer cycle mode should be turned off with DatmCycleOff&. The single update mode is specified with
DatmUpdateSingle&. The buffer size is set to 10, the number of scans.

ret& = VBdaqAdcTransferSetBuffer&(handle&,buf%(), scans&,
DatmUpDateSingle&+DatmCycleOff&)

With all acquisition parameters and the transfer configured, the acquisition can now be armed. Once armed,
the acquisition will begin immediately upon detection of the trigger event. As in the case of the immediate
trigger, the acquisition will begin immediately upon execution of the daqAdcArm function.

ret& = VBdaqAdcArm&(handle&)

After setting up and arming the acquisition, data collection will begin upon satisfaction of the trigger event.
Since the trigger source is software, the trigger event will not take place until the application issues the
software trigger event. To prepare for the trigger event, the following line initiates an A/D transfer from the
Daq* device to the defined user buffer. No data is transferred at this point, however.

ret& = VBdaqAdcTransferStart&(handle&)

The transfer has been initiated, but no data will be transferred until the trigger event occurs. The following
line will signal the software trigger event to the driver.

ret& = VBdaqAdcSoftTrig&(handle&)

Both the acquisition and the transfer are now currently active. The transfer will continue indefinitely until
terminated by the application. The application can monitor the transfer process with the following lines of
code:

ret& = VBdaqWaitForEvent(handle&, DteAdcDone&)
Once this function returns, the acquisition as well as the data transfer has been stopped. We should check
the status one more time to get the total number of scans actually transferred to disk.

ret& = VBdaqAdcTransferGetStat(handle&,active&,retCount&)
Finally, display the results and close the device.

Print "Results of BufferTransfer:"
 Print " Digital_ch_0 Analog_ch_5 Analog_ch_8"
 For i& = 0 To scans& - 1
 ' shift the upper (valid) 8 bits of the digital input to the lower 8
bits

 buf%(i& * channels&) = ((buf%(i& * channels&) And &HFF00) \ 256) And
&HFF

 Print "Scan"; i& + 1; "Data:";
 For j& = 0 To channels& - 1
 Print Tab(j& * 14 + 17); buf%(i& * channels& + j&);
 Next j&
 Print
 Next i&
 ret& = VBdaqClose(handle&)

10-16 Enhanced API Programming Models (TempBook) TempBook User’s Manual

Background Acquisition
This example reads scans from several channels into a user-allocated
buffer in the background. Functions used include:

• • VBdaqAdcArm&(handle&)
• • VBdaqAdcSetAcq&(handle&, DaamNShot&, 0, scans&)
• • VBdaqAdcSetFreq&(handle&, freq#)
• • VBdaqAdcSetMux&(handle&, 1, channels&, DgainX1&,

1)
• • VBdaqAdcSetTrig&(handle&, DatsSoftware&, 0,0,0,0)
• • VBdaqAdcSoftTrig&(handle&)
• • VBdaqAdcTransferGetStat&(handle&, active&,

retCount&)
• • VBdaqAdcTransferSetBuffer(handle&, buf%(),

scans&, DatmCycleOff& + DatmUpdateSingle&)
• • VBdaqAdcTransferStart(handle&)
• • VBdaqClose(handle&)
• • VBdaqOpen("TempBook0")
• • VBdaqSetErrorHandler(handle&, 100)

The constants used are defined as follows:
Const channels& = 8
Const scans& = 9
Const freq# = 200

As usual, the device is opened and the error handler set up:
handle& = VBdaqOpen("TempBook0")
ret& = VBdaqSetErrorHandler(handle&, 100)
On Error GoTo ErrorHandlerADC4

The acquisition is configured for 9 post-trigger scans and Nshot mode:
ret& = VBdaqAdcSetAcq&(handle&, DaamNShot&, 0,
scans&)

Set up the scan configuration for channels 1 to 9 with a gain of ×1:

ret& = VBdaqAdcSetMux&(handle&, 1, channels&,
DgainX1&, 1)

Set the post-trigger scan rates:

ret& = VBdaqAdcSetFreq&(handle&, freq#)
Set the trigger source to a software trigger command; the other trigger
parameters are not needed with a software trigger.

ret& = VBdaqAdcSetTrig&(handle&, DatsSoftware&,
0,0,0,0)

Arm the acquisition:

ret& = VBdaqAdcArm&(handle&)
Now to set up the buffer for a background acquisition in update-single
mode with cycle-mode off:

ret& = VBdaqAdcTransferSetBuffer(handle&, buf%(), scans&, DatmCycleOff& +
DatmUpdateSingle&)

Start the transfer, and trigger to begin transferring data:
ret& = VBdaqAdcTransferStart(handle&)
ret& = VBdaqAdcSoftTrig&(handle&)

These next few lines wait for the first data to be received, by checking the retCount value after calling
daqAdcTransferGetStat():

retCount& = 0
 While retCount& = 0
 ret& = VBdaqAdcTransferGetStat&(handle&, active&, retCount&)
 Wend

With the same function, wait for the acquisition to complete:
While active& <> 0
 ret& = VBdaqAdcTransferGetStat&(handle&, active&, retCount&)
Wend
Print "Acquisition complete:"; retCount&; "scans acquired."

TempBook User’s Manual Enhanced API Programming Models (TempBook) 10-17

Now the data can be displayed or manipulated:
Print "Data acquired:"
 For i& = 0 To channels& - 1
 Print "Channel"; i& + 1; "Data:";
 For j& = 0 To scans& - 1
 Print Tab(j& * 7 + 17); buf%(j& * channels& + i&);
 Next j&
 Print
 Next i&

Finally, close the device:
ret& = VBdaqClose(handle&)

10-18 Enhanced API Programming Models (TempBook) TempBook User’s Manual

Temperature Acquisition Using TC Conversion Functions
This example demonstrates the general-purpose data-transfer functions
coupled with TC-specific conversion routines. This method first configures
the channel scan group for thermocouple input, then acquires the raw A/D
data from the thermocouple input, and finally, converts the raw A/D data to
temperature units in degrees C.

• • VBdaqOpen&(daqName$)
• • VBdaqAdcSetFreq& (handle&, freq!)
• • VBdaqAdcSetAcq& (handle&, mode&, preTrigCount&,

postTrigCount&)
• • VBdaqAdcSetScan& (handle&, channels&(),

gains&(), flags&(), chanCount&)
• • VBdaqAdcSetClockSource&(handle&, clockSource&)
• • VBdaqAdcSetTrig& (handle&, triggerSource&, rising&,

level%, hysteresis%, channel&)
• • VBdaqAdcTransferSetBuffer&(handle&, buf%(),

scanCount&, transferMask&)
• • VBdaqAdcTransferStart& (handle&)
• • VBdaqAdcArm&(handle&)
• • VBdaqWaitForEvent(handle&, event&)
• • VBdaqAdcTransferGetStat& (handle&, active&,

retCount&)
• • VBdaqCvtTCSetupConvert(nscan&, cjcPosition&, ntc&,

tcType&, bipolar&, avg&, counts%(), scans&,
temp%(), ntemp&)

• • VBdaqClose&(handle&)

The following list defines the necessary constants and variables for
temperature acquisition and conversion.

Const Scans& = 10
Const Level% = 0
Const Rising& = 0
Const Start& = 0
Const End& = 7
Const NumTcChans& = End& - Start& + 1
Const TotalChans& = NumTcChans + 3
Const TcGain& = TbkBiTypeJ&
Const CjcGain& = TbkBiCJC&
Const TcType& = TbkTCTypeJ&
Const Freq! = 1000.0
Const AvgType& = 0
Const Gain& = TbkBiTypeJ&
Const Flag& = DafUnsigned& + DafDifferential& + DafBiPolar&
Const Chans& = End& - Start&+1

Dim buf%(Scans& * TotalScans&)
Dim temp%(NumTcChans&)
Dim handle&
Dim I&,j&, active&, retCount&
Dim Gains&(TotalChans&)
Dim Chans&(TotalChans&)
Dim Flags&(TotalChans&)

First, we need to open the TempBook/66 device. This example uses a device named “TempBook0”. The
device name must be for a valid configured device.

 ‘ Open TempBook/66 device
handle& = VBdaqOpen&(“TempBook0”)

Next, build the channel scan group configuration. The following code sets up the configuration arrays that
define the channel scan group. The channels are configured with the appropriate gain, mode and polarity
definitions.

‘ Configure CJC and shorted channel

TempBook User’s Manual Enhanced API Programming Models (TempBook) 10-19

Chans[0] = 18 ‘ Shorted channel
Chans[1] = 18 ‘ Shorted channel
Chans[2] = 16 ‘ CJC channel

Gains[0] = TbkBiCJC& ‘ Shorted channel at CJC gain
Gains[1] = TC_GAIN; ‘ Shorted channel at thermocouple gain
Gains[2] = TbkBiCJC; ‘ CJC channel reading at CJC gain

‘ All channels bipolar
Flags&[0] = Flag&
Flags&[1] = Flag&
Flags&[2] = Flag&

‘ Configure thermocouple channels after shorted and CJC channels in scan
For I& =0 To NumTcChans
Chans&(I&+3) = Start& + I&;
Gains&(I&+3) = TcGain&
Flags&(i+3) = Flag&

Next I&

‘ Configure the TempBook with the scan sequence
ret& = VbdaqAdcSetScan& (handle&, chans&(), gains&(), flags&(), TotalChans&)

Now the acquisition itself needs to be configured. This acquisition specifies a counted acquisition
(DaamNShot&) with no pre-trigger and 10 post-trigger (Scans&) scans.

‘ Set the acquisition mode and clock source
ret& = VBdaqAdcSetAcq& (handle&, DaamNShot&, 0, Scans&)
ret& = VBdaqAdcSetClockSource& (handle&, DacsAdcClock&)

The acquisition trigger is set to immediate triggering (DatsImmediate&); however, the acquisition will
not be started until it is armed later on.

 ‘ Configure to trigger immediately after armed
ret& = VBdaqAdcSetTrig& (handle&, DatsImmediate&, True, 0, 0, 0)

The scan frequency is now set to 1000 Hz (Freq!).

‘ Set the scan frequency
ret& = VBdaqAdcSetFreq& (handle&, Freq!)

Now that the acquisition has been configured, the transfer buffer for the raw data must be defined. The
following routines will configure the buf% array as the raw data array with a length of 10 (Scans&) scans.
Also, the buffer is set to linear mode by specifying the DatmCycleOff& flag. The
DatmUpdateSingle& flag indicates that the buffer should be updated while each sample is acquired.
After the buffer has been defined, the raw data transfer will be started with the daqAdcTransferStart
routine. However, data transfer into the raw data buffer will not really begin until the acquisition has been
triggered.

 ‘ Set up and start the transfer
ret& = VBdaqAdcTransferSetBuffer& (handle&, buf%(), Scans&, DatmCycleOff& +
DatmUpdateSingle&)
ret& = VBdaqAdcTransferStart& (handle&)

The acquisition is now configured, and the raw data buffer is ready to receive transferred data. To initiate
the transfer, the acquisition needs to be armed. Once armed, the data transfer will begin immediately since
the trigger source was configured as DatsImmediate&.

 ‘ Arm the acquisition
VBdaqAdcArm& (handle&)

The acquisition and transfer of the raw data is now active. The following statement can be used to wait for
the termination of the transfer. Once the transfer is terminated, the raw data will then be present in the
buffer.

‘ Wait until the acquisition is complete
ret& = VBdaqWaitForEvent& (handle&, DteAdcDone&)
‘ Get the number of scans acquired

10-20 Enhanced API Programming Models (TempBook) TempBook User’s Manual

ret& = VBdaqAdcTransferGetStat& (handle&, active&, retCount&)
Print retCount&, “ Scans acquired. Converting data... "

The raw data is now available to be converted to temperature readings. The following code performs the
conversion process on the buf%() raw data buffer. When complete, the temperature values will be
available in the temps%() array. The VBdaqCvtTCSetupConvert function is used to perform the
conversion. Here, the conversion is configured with the number of readings per scan
(TotalChans&=11), CJC position of 2, the number of thermocouple channels (NumTcChans&=8), the
thermocouple type (TcType&= TbkTCTypeJ&), bipolar raw data, no averaging (AvgType&=0), the
raw data buffer (buf%()), the total number of scans (Scans&=10) and the target array for the converted
temperature data in tenths of degrees C (temp%()).

‘ Configure the TC conversion functions to use zero correction
ret& = VBdaqAutoZeroCompensate& (1)

‘ Configure and Perform Thermocouple Linearization
ret& = VBdaqCvtTCSetupConvert& (TotalChans&, 2, NumTcChans&, TcType&,1,
AvgType&,

buf%(), Scans&, temps%(), NumTcChans&)

‘ Print a channel column labels
Print "Averaged temperature readings:"

For I& = 0 To NumTcChans&
Print “Channel”, I&, “ Temperatue “, temp%(I&)/10.0,” C”

Next I&

‘ Close and exit
ret& = VBdaqClose& (handle&)

TempBook User’s Manual Enhanced API Programming Models (TempBook) 10-21

Double Buffering
This example demonstrates using double buffering in the
background mode, so that data can be read into one buffer
while the another buffer can be processed in the
foreground. Functions used include:

• • VBdaqAdcArm&(handle&)
• • VBdaqAdcBufferTransfer(buf1%(0),

BLOCK&, 0, 0, 0, tmpActive&,
tmpRetCount&)

• • VBdaqAdcSetAcq&(handle&, DaamNShot&, 0,
scans&)

• • VBdaqAdcSetFreq&(handle&, freq!)
• • VBdaqAdcSetMux&(handle&, 1, channels&,

DgainX1&, DafAnalog&+DafUnipolar&)
• • VBdaqAdcSetTrig(handle&, DatsSoftware&,

rising&, level%, HYSTERESIS%, 1)
• • VBdaqAdcSoftTrig&(handle&)
• • VBdaqAdcTransferGetStat(handle&,

active&, retCount&)
• • VBdaqAdcTransferSetBuffer(handle&,

buf0%(), BLOCK&,
DatmCycleOff& + DatmUpdateSingle&)

• • VBdaqAdcTransferStart(handle&)
• • VBdaqClose(handle&)
• • VBdaqOpen("TempBook0")
• • VBdaqSetErrorHandler(handle&, 100)

The following constants define the number of channels and
other acquisition parameters:

 Const channels& = 8
 Const scans& = 20000
 Const BLOCK& = 1000
 Const freq! = 5000#
 Const level% = 0
 Const HYSTERESIS% = 0
 Const rising& = 0

Dimension 2 buffers for double buffering:
 Dim buf0%(channels& * BLOCK&)
 Dim buf1%(channels& * BLOCK&)

Set error handler and initialize TempBook:
 handle& = VBdaqOpen("TempBook0")
 ret& = VBdaqSetErrorHandler(handle&,
100)

 On Error GoTo ErrorHandlerADC7
Set the acquisition to NShot on trigger and the post-
trigger scan count:

 ret& = VBdaqAdcSetAcq&(handle&,
DaamNShot&, 0, scans&)

Set the scan configuration for unity gain, from channels 1
to 8, in analog unipolar mode:

 ret& = VBdaqAdcSetMux&(handle&, 1,
channels&, DgainX1&,
DafAnalog&+DafUnipolar&)

Set the post-trigger scan rate:
 ret& = VBdaqAdcSetFreq&(handle&, freq!)

Set the trigger source to a software trigger command:
 ret& = VBdaqAdcSetTrig(handle&,
DatsSoftware&, rising&, level%,
HYSTERESIS%, 1)

Arm the acquisition:
 ret& = VBdaqAdcArm&(handle&)

Set up the first buffer for BLOCK scans, with cycle mode off and update single on:

10-22 Enhanced API Programming Models (TempBook) TempBook User’s Manual

 ret& = VBdaqAdcTransferSetBuffer(handle&, buf0%(), BLOCK&, DatmCycleOff& +
DatmUpdateSingle&)

Start the first transfer; the transfer will actually start upon trigger detection. In this case, the following
software trigger will start the transfer:

 ret& = VBdaqAdcTransferStart(handle&)
Issue a software trigger command to the hardware to trigger the transfer:

 ret& = VBdaqAdcSoftTrig&(handle&)
The next do loop swaps the active buffer back and forth from buf0 to buf1 and waits for the acquisition
to go inactive or the buffer to fill up. Swapping continues until the transfer goes inactive:

 whichBuf& = 0
 Do

The following line changes the current buffer:
 If whichBuf& = 1 Then whichBuf& = 0 Else whichBuf& = 1

Wait for the acquisition to go inactive or the buffer to be filled:
 Do
 ret& = VBdaqAdcTransferGetStat(handle&, active&, retCount&)
 Loop While ((active& <> 0) And (retCount& < BLOCK&))

If the previous acquisition is still active, start another transfer into the next buffer:
 If (active& <> 0) Then
 If whichBuf& = 0 Then
 ret& = VBdaqAdcTransferSetBuffer(handle&, buf0%(), BLOCK&,
DatmCycleOff& + DatmUpdateSingle&)

 ret& = VBdaqAdcTransferStart(handle&)
Otherwise, restart the transfer into the current buffer:

 Else
 'ret& = VBdaqAdcBufferTransfer(buf1%(0), BLOCK&, 0, 0, 0,

tmpActive&, tmpRetCount&)
 ret& = VBdaqAdcTransferSetBuffer(handle&, buf1%(), BLOCK&,

DatmCycleOff& + DatmUpdateSingle&)
 ret& = VBdaqAdcTransferStart(handle&)
 End If
 End If

Send the data into the process buffer, totals():
 If (retCount& > 0) Then

Average the readings in the process buffer and print the results:
 For j& = 0 To channels& - 1
 totals&(j&) = 0
 Next j&
 For i& = 0 To retCount& - 1
 For j& = 0 To channels& - 1

Decide which buffer to add the data from:
 If whichBuf& = 0 Then
 totals&(j&) = totals&(j&) + buf1%(i& * channels& + j&)
 Else
 totals&(j&) = totals&(j&) + buf0%(i& * channels& + j&)
 End If
 Next j&
 Next i&

Display the averaged results:
 Print "Averages:";
 For j& = 0 To channels& - 1
 Print Tab(j& * 7 + 17); Format$((5# / 32768#) * totals&(j&) /

retCount&, "#0.000");
 Next j&
 Print
 End If

Continue the do..while loop until the acquisition goes inactive:
 Loop While (active& <> 0)

Close the device before exiting:
 ret& = VBdaqClose(handle&)

TempBook User’s Manual Enhanced API Programming Models (TempBook) 10-23

Direct-to-Disk Transfers
This example takes multiple scans from multiple channels and writes
them directly to disk in a packed-data format. Functions used are:

• • VBdaqAdcArm&(handle&)
• • VBdaqAdcSetAcq&(handle&, DaamNShot, 0, scans&)
• • VBdaqAdcSetDiskFile&(handle&, "adcex8.bin",

DaomAppendFile&, 0)
• • VBdaqAdcSetFreq&(handle&, freq!)
• • VBdaqAdcSetMux&(handle&, 1, channels&, DgainX1&,

DafUniPolar&+DafAnalog&)
• • VBdaqAdcSetTrig&(handle&, DatsSoftware&,

DatdRisingEdge&, 0, HYSTERESIS%, 1)
• • VBdaqAdcSoftTrig&(handle&)
• • VBdaqAdcTransferGetStat&(handle&, active&,

retCount&)
• • VBdaqAdcTransferSetBuffer&(handle&, buf%(),

BLOCK&, DatmCycleOn& + DatmUpdateBlock&)
• • VBdaqAdcTransferStart&(handle&)
• • VBdaqClose&(handle&)
• • VBdaqCvtRawDataFormat&(buf%(), DacaUnpack, BLOCK&,

channels&, scanCount&)
• • VBdaqOpen&("TempBook0")
• • VBdaqSetErrorHandler(handle&, 100)

File handling in MS-Windows requires calls to the windows API, so the
following constants are defined for use in those calls. For further
information, see mapiwin.h.

Const GENERIC_READ& = &H80000000
Const OPEN_EXISTING = 3
Const FILE_ATTRIBUTE_NORMAL& = &H80
Const OPEN_ALWAYS = 4
Const CREATE_ALWAYS = 2

Also define the usual constants defining scan parameters and some
declarations for file manipulation:

Const channels& = 2
Const scans& = 800
Const freq! = 200#
Const BLOCK& = 200 ' CHANNELS& * BLOCK& must be
a multiple of 4

Const HYSTERESIS% = 0
Dim buf%(channels& * BLOCK&)
Dim fileHandle&
Dim byteCount&, wordCount&, sampleCount&,
scanCount&

Dim binFile$
First set the name of the file to be used for the acquisition:

binFile = "adcex8.bin"
Open the device, and set the error handler:

handle& = VBdaqOpen&("TempBook0")
ret& = VBdaqSetErrorHandler(handle&, 100)
On Error GoTo ErrorHandlerADC8

Set the acquisition to NShot on trigger and the post-trigger scan count:

 ret& = VBdaqAdcSetAcq&(handle&, DaamNShot, 0, scans&)
Set the scan configuration for channels 1 to 8 with a gain of ×1 in unipolar analog mode:

 ret& = VBdaqAdcSetMux&(handle&, 1, channels&, DgainX1&,
DafUniPolar&+DafAnalog&)

Set the post-trigger scan frequency:

 ret& = VBdaqAdcSetFreq&(handle&, freq!)

10-24 Enhanced API Programming Models (TempBook) TempBook User’s Manual

Set the trigger source to a software trigger command; the rest of the parameters have no effect on a software
trigger:

 ret& = VBdaqAdcSetTrig&(handle&, DatsSoftware&, DatdRisingEdge&, 0,
HYSTERESIS%, 1)

 Set the direct-to-disk filename with no pre-write, in append mode; also available is:

 ret& = VBdaqAdcSetDiskFile&(handle&, "adcex8.bin", DaomAppendFile&, 0)
Start reading data in the background mode with cycle mode on and updateBlock:

ret& = VBdaqAdcTransferSetBuffer&(handle&, buf%(), BLOCK&, DatmCycleOn& +
DatmUpdateBlock&)

ret& = VBdaqAdcTransferStart&(handle&)
ret& = VBdaqAdcArm&(handle&)
ret& = VBdaqAdcSoftTrig&(handle&)

Monitor the progress of the transfer:

active& = -1
 While active& <> 0
 ret& = VBdaqAdcTransferGetStat&(handle&, active&, retCount&)
 Wend
 Print "Acquisition complete:"; retCount&; "scans acquired."

Close the device:

 ret& = VBdaqClose&(handle&)
Now we convert the binary file to a text file. There is no simple way to do this, so it is necessary to open
the file and manipulate it by hand.

First, open the binary file:

Open "adcex8.bin" For Input As 1
Next, get a handle for the file; this is one of the windows API calls, CreateFile (it doesn’t actually
create anything, however).

fileHandle& = CreateFile(binFile, GENERIC_READ, &H1, "", CREATE_ALWAYS,
FILE_ATTRIBUTE_NORMAL, "")

Now open the text output file where the converted data will be written:

Open "adcex8.txt" For Output As 2
Next, actually convert the binary data to text:

 Do
Convert BLOCK unpacked scans to packed bytes:

 scanCount& = BLOCK&
 sampleCount& = scanCount& * channels&
 wordCount& = sampleCount& * 3 / 4
 byteCount& = 2 * wordCount&

Read the packed bytes from the input file, and get the number of bytes actually read. The UBound()and
Lbound()functions just return the upper and lower bounds of the buffer. Get #1 retrieves data from the
file and stores it in the buf() array.

 Dim sz&
 sz& = UBound(buf%) - LBound(buf%)
 For i& = 0 To sz&
 Get #1, i&, buf(i&)
 Next i&
 byteCount& = sz

Write the scans read and unpacked to the text file

 For i& = 0 To scanCount& - 1
 For j& = 0 To channels& - 1

Send a tab between channels and a newline after each scan:

 If (j& < channels& - 1) Then
 termChar$ = Chr$(9)
 Else
 termChar$ = Chr$(13) + Chr$(10)
 End If

TempBook User’s Manual Enhanced API Programming Models (TempBook) 10-25

Calculate and write out the voltage value:

 voltage! = buf%(i& * channels& + j&) * 5! / 32768!
 Print #2, Format$(voltage!, ".000") + termChar$;
 Next j&
 Next i&

Print something so the program does not appear to be locked:

 Print ".";
 Loop While (byteCount& > 0) ' A byteCount of 0 indicates end-of-file
 ' Close the input and output files
 Close 1
 Close 2
 Print "complete."

After program execution: data has been collected directly to disk in a binary file format, the TempBook
device closed, the binary file was then opened, the data unpacked, and then written to a text file.

10-26 Enhanced API Programming Models (TempBook) TempBook User’s Manual

Transfers With Driver-Allocated Buffers
This example demonstrates the use of the new
daqAdcTransferBufData() function. The following program
reads scans of multiple channels in the background mode and uses a
software trigger to start the acquisition. Functions used include:

• • VBdaqAdcArm&(handle&)
• • VBdaqAdcSetAcq&(handle&, DaamNShot&, 0, scans&)
• • VBdaqAdcSetFreq&(handle&, freq#)
• • VBdaqAdcSetMux&(handle&, 1, channels&, DgainX1&,

1)
• • VBdaqAdcSetTrig&(handle&, DatsSoftware&, 0,0,0,0)
• • VBdaqAdcSoftTrig&(handle&)
• • VBdaqAdcTransferBufData(handle&, userBuf(0), 1,

DatmWait , retVal)
• • VBdaqAdcTransferGetStat(handle, active, retCount);
• • VBdaqAdcTransferSetBuffer(handle&, buf%(), scans&,

DatmCycleOff& + DatmUpdateSingle&)
• • VBdaqAdcTransferStart(handle&)
• • VBdaqClose(handle&)
• • VBdaqOpen("TempBook0")
• • VBdaqSetErrorHandler(handle&, 100)

The constants used are defined as follows:
Const channels& = 8
Const scans& = 9
Const freq# = 200

As usual, the device is opened and the error handler is set up:
handle& = VBdaqOpen("TempBook0")
ret& = VBdaqSetErrorHandler(handle&, 100)
On Error GoTo ErrorHandlerADC4

The acquisition is configured for 9 post-trigger scans and Nshot mode:
ret& = VBdaqAdcSetAcq&(handle&, DaamNShot&, 0,
scans&)

Set up the scan configuration for channels 1 to 9 with a gain of ×1:
ret& = VBdaqAdcSetMux&(handle&, 1, channels&,
DgainX1&, 1)

Set the post-trigger scan rates:
ret& = VBdaqAdcSetFreq&(handle&, freq#)

Set the trigger source to a software trigger command; the other trigger parameters are not needed with a
software trigger.

ret& = VBdaqAdcSetTrig&(handle&, DatsSoftware&, 0,0,0,0)

Now to set up the buffer for a background acquisition, in update single mode with cycle mode off.
ret& = VBdaqAdcTransferSetBuffer(handle&, buf%(), scans&, DatmCycleOff& +
DatmUpdateSingle&)

Start the transfer, and trigger to begin transferring data:
ret& = VBdaqAdcTransferStart(handle&)

Arm the acquisition:
ret& = VBdaqAdcArm&(handle&)

Trigger the transfer:
ret& = VBdaqAdcSoftTrig&(handle&)

Monitor the progress of the background transfer:
VBdaqAdcTransferGetStat(handle, active, retCount);
retCount=1;
 while retCount<>0 do
 VBdaqAdcTransferBufData(handle&, userBuf(0), 1, DatmWait , retVal)
 print"Transfer in progress: “,retCount, “scans acquired."
 for i=0 to CHANS

TempBook User’s Manual Enhanced API Programming Models (TempBook) 10-27

 print userBuf(i)
 VBdaqAdcTransferGetStat(handle, active, retCount);
next i
print "Acquisition complete."

Now the data can be displayed or manipulated:
Print "Data acquired:"
 For i& = 0 To channels& - 1
 Print "Channel"; i& + 1; "Data:";
 For j& = 0 To scans& - 1
 Print Tab(j& * 7 + 17); buf%(j& * channels& + i&);
 Next j&
 Print
 Next i&

Finally, close the device:
ret& = VBdaqClose(handle&)

10-28 Enhanced API Programming Models (TempBook) TempBook User’s Manual

 Summary Guide of Selected Enhanced API Functions
The following table organizes the enhanced API functions by type and includes a brief description.

Simple One-Step Routines
For single gain, consecutive channel, foreground transfers, use the following functions:
Foreground Operation Single Scan Multiple Scans
Single Channel daqAdcRd daqAdcRdN
Consecutive Multiple Channels daqAdcRdScan daqAdcRdScanN

Complex A/D Scan Group Configuration Routines
For non-consecutive channels, high-speed digital channels, multiple gain settings, or multiple polarity settings, use the SetScan

functions.
daqAdcSetScan Set scan sequence using arrays of channel and gain values.
daqAdcSetMux Set a contiguous scan sequence using single gain, polarity and channel flag values

Trigger Options
After the scan is set, the trigger needs to be set. The two triggering modes are one-shot or continuous.
• In one-shot mode, a trigger is required to start each A/D scan.
• A single trigger starts the scans, and the pacer clock determines the rate between scans.
Note: If the trigger source is analog, a trigger level is also required.
daqAdcSetTrig Configure the trigger event using source, level, rising and channel values.
daqAdcCalcTrig Using the selected trigger voltage, trigger direction, channel gain, and reference voltage, return the

analog trigger source and value which can be used with daqAdcSetTrig.
If a software trigger is selected, the start time of the scan depends on the application calling daAdcSoftTrig.

Multiple Scan Timing
If the acquisition is to have multiple scans and the trigger mode is one-shot, the pacer clock needs to be set with one of the

following functions:
daqAdcSetRate Set/Get the specified frequency or period for the specified mode.
daqAdcSetFreq Set the pacer clock to the given frequency.

A/D Acquisition
A/D acquisition settings are not active until the acquisition is armed.

daqAdcArm Arm an A/D acquisition using the current configuration. If the trigger source was set to be immediate,
the acquisition will be triggered immediately.

daqAdcDisarm Disarm the current acquisition if one is active. This command will disarm the current acquisition and
terminate any current A/D transfers.

daqAdcSetAcq Define the mode of the acquisition and set the pre-trigger and post-trigger acquisition counts, if
applicable.

A/D Data Transfer
After the acquisition is started, the data needs to be transferred to the application buffer. Three routines are used:
daqAdcTransferSetBuffer Configure a buffer for A/D transfer. Allows configuration of the buffer for block and single

reading update modes as well as linear and circular buffer definitions.
daqAdcTransferStart Start a transfer from the Daq* device to the buffer specified in the daqAdcTransferSetBuffer

command
daqAdcTransferStop Stop a transfer from the Daq* device to the buffer specified in the daqAdcTransferSetBuffer

command
To find out whether a background A/D transfer is complete or to stop transfers, use the following function:
daqAdcTransferGetStat Return current A/D transfer status as well as a count representing the total number of transferred

scans or the number of scans available.

daqCommand Reference (Enhanced API) 11

TempBook User’s Manual daqCommand Reference (Enhanced API) 11-1

Overview
The first part of this chapter describes the TempBook driver commands for Windows95 and WindowsNT in
32-bit Enhanced mode (this is the Enhanced API and is not to be confused with the Standard API). The
first table lists the commands by their function types as defined in the driver header files. Then, the
prototype commands are described in alphabetical order as indexed below. Note: The TempBook API is a
subset of the Daq* API which also applies to other products; only TempBook-related commands are
described here.

Beginning on page 11-35, several reference tables define parameters for: event-handling definitions,
hardware definitions, ADC trigger-source and miscellaneous definitions, WBK card definitions, the API
error codes, etc.

Function Description Page

Device Initialization Prototypes
daqOpen Open a session with the Daq* (including TempBook) 11-28
daqClose End communication with the Daq* (including TempBook) 11-20
daqOnline Check online status of the Daq* (including TempBook) 11-28
daqGetDeviceCount Return the number of currently configured devices 11-26
daqGetDeviceList Return the list of currently configured devices 11-26
daqGetDeviceProperties Return the properties of specified device 11-27

Error Handler Function Prototypes
daqSetDefaultErrorHandler Set the default error handler 11-29
daqSetErrorHandler Specify a user defined routine to call when an error occurs in any command 11-29
daqProcessError Process a driver defined error condition 11-29
daqGetLastError Return the last logged error condition 11-28
daqDefaultErrorHandler Call the default error handler 11-25
daqFormatError Return text string for specified error 11-26

Event Handling Function Prototypes
daqSetTimeout Set the time-out value for the Daq* operation (including TempBook) 11-30
daqWaitForEvent Wait for specified Daq* device event (including TempBook) 11-32
daqWaitForEvents Wait for multiple specified Daq* device events (including TempBook) 11-32

Utility Function Prototypes
daqGetDriverVersion Return the software version 11-27
daqGetHardwareInfo Return the hardware version 11-27

Expansion Configuration Prototypes
daqSetOption Set options for a device’s channel/signal path configuration 11-30

Custom ADC Acquisition Prototypes - Scan Sequence
daqAdcSetMux Configure a scan specifying start and end channels 11-13
daqAdcSetScan Configure up to 256 channels making up an A/D or HS digital input scan 11-14
daqAdcGetScan Read the current scan configuration 11-5

Custom ADC Acquisition Prototypes - Trigger
daqAdcCalcTrig Calculate the trigger level and trigger source for an analog trigger 11-4
daqAdcSetTrig Configure an A/D trigger 11-15
daqAdcSoftTrig Save a software trigger command to the DaqBook/DaqBoard 11-16

Custom ADC Acquisition Prototypes - Scan Rate and Source
dacAdcSetRate Configure the ADC scan rate with the mode parameter 11-13
daqAdcSetFreq Configure the pacer clock frequency in Hz 11-12
daqAdcGetFreq Read the current pacer clock frequency 11-5

Custom ADC Acquisition Prototypes - Scan Count, Rate and Source
daqAdcSetAcq Set acquisition configuration information 11-10

Custom ADC Acquisition Prototypes - Direct-to-Disk
daqAdcSetDiskFile Specify the disk file for direct-to-disk transfers 11-12

Custom ADC Acquisition Prototypes - Acquisition Control
daqAdcArm Arm an acquisition 11-2
daqAdcDisarm Disarm an acquisition 11-4

Custom ADC Acquisition Prototypes - Data Transfer without Buffer Allocation
daqAdcTransferBufData Transfer scans from driver-allocated buffer to user-specified buffer 11-16
daqAdcTransferSetBuffer Setup a destination buffer for an ADC transfer 11-18
daqAdcTransferStart Start an ADC transfer 11-19
daqAdcTransferGetStat Retrieve status of an ADC transfer 11-17

11-2 daqCommand Reference (Enhanced API) TempBook User’s Manual

Function Description Page
daqAdcTransferStop Stop an ADC transfer 11-19

Custom ADC Acquisition Prototypes - Buffer Manipulation
daqAdcBufferRotate Reorganize a circular buffer so that oldest data is oriented towards the front 11-3

One-Step ADC Acquisition Prototypes
daqAdcRd Configure an A/D acquisition and read one sample from a channel 11-6
daqAdcRdScan Configure an A/D acquisition and read one scan 11-8
daqAdcRdN Configure an A/D acquisition and read multiple scans from a channel 11-7
daqAdcRdScanN Configure an A/D acquisition and read multiple scans 11-9

Data Format and Conversion Prototypes
daqAdcSetDataForma Set the raw and the post-acquisition data formats 11-11
daqCvtRawDataFormat Convert raw data to a specified format 11-20
daqCvtSetAdcRange Set the ADC Voltage Range for the conversion routines 11-21

Zero Offset Prototypes
daqZeroSetup Configure data for zero compensation 11-33
daqZeroConvert Perform zero compensation on one or more scans 11-33
daqZeroSetupConvert Perform both the setup and convert steps with one call 11-30
daqAutoZeroCompensate Configure the thermocouple linearization functions to automatically perform zero

compensation
11-19

Thermocouple Conversion Prototypes
daqCvtTCConvert Convert raw A/D readings from thermocouples to temperature readings 11-22
daqCvtTCSetup Set up parameters for subsequent thermocouple temperature conversions 11-24
daqCvtTCSetupConvert Set up and convert raw A/D readings from thermocouples into temperature readings 11-25

Test Prototypes
daqTest Perform a specified test on a Daq* device 11-31

Commands in Alphabetical Order
The following pages give details for each API command. Listed in alphabetical order, each section has a
table that summarizes the main features of the command (C, Visual BASIC, and Delphi language prototypes
and their related parameters). An explanation follows with related information and in some cases a
programming example. Typographic note: Commands, parameters, values, and code use a bold, mono-
spaced Courier font to help distinguish characters that can be ambiguous in other fonts.

daqAdcArm
DLL Function daqAdcArm(DaqHandleT handle);
C daqAdcArm(DaqHandleT handle);
Visual BASIC VBdaqAdcArm&(ByVal handle&)
Delphi daqAdcArm(handle:DaqHandleT)
Parameters
handle Handle to the device to which configured ADC acquisition is to be armed
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqAdcDisarm
Program References ADCEX1.C, DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)
Used With All devices

daqAdcArm allows you to arm an ADC acquisition by enabling the currently defined ADC
configuration for acquisition. ADC acquisition will occur when the trigger event (as specified by
daqAdcSetTrig)is satisfied. All ADC acquisition configuration information must be specified
prior to the daqAdcArm command. For a previously configured acquisition, the daqAdcArm
command will use the specified parameters. If no previous configuration was given, or it is
desirable to change any or all acquisition parameters, then those commands relating to the desired
ADC acquisition configuration must be issued prior to calling daqAdcArm.

TempBook User’s Manual daqCommand Reference (Enhanced API) 11-3

daqAdcBufferRotate
DLL Function daqAdcBufferRotate(DaqHandleT handle, PWORD buf, DWORD scanCount, DWORD

chanCount, DWORD retCount);
C daqAdcBufferRotate(DaqHandleT handle, PWORD buf, DWORD scanCount, DWORD

chanCount, DWORD retCount);
Visual BASIC VBdaqAdcBufferRotate&(ByVal handle&, buf%(), ByVal scanCount&, ByVal chanCount&,

ByVal retCount&)
Delphi daqAdcBufferRotate(handle:DaqHandleT; buf:PWORD; scanCount:DWORD;

chanCount:DWORD; retCount:DWORD)
Parameters
handle Handle to the device for which the ADC transfer buffer is to be rotated
buf Pointer to the buffer to rotate
scanCount Total number of scans in the buffer
chanCount Number of channels in each scan
retCount Last value returned in the retCount parameter of the daqAdcTransferGetStat function
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqAdcTransferGetStat, daqAdcTransferSetBuffer
Program References None
Used With All devices

daqAdcBufferRotate allows you to linearize a circular buffer acquired via a transfer in cycle
mode. This command will organize the circular buffer chronologically. In other words, it will order
the data from oldest-first to newest-last in the buffer. When scans are acquired using
daqAdcBufferTransfer with a non-zero cycle parameter, the buffer is used as a circular
buffer; once it is full, it is re-used, starting at the beginning of the buffer. Thus, when the
acquisition is complete, the buffer may have been overwritten many times and the last acquired scan
may be any place within the buffer.

For example, during the acquisition of 1000 scans in a buffer that only has room for 60 scans, the
buffer is filled with scans 1 through 60. Then scan 61 overwrites scan 1; scan 62 overwrites scan 2;
and so on until scan 120 overwrites scan 60. At this point, the end of the buffer has been reached
again and so scan 121 is stored at the beginning of the buffer, overwriting scan 61. This process of
overwriting and re-using the buffer continues until all 1000 scans have been acquired. At this point,
the buffer has the following contents:

Buffer
Position

1 2 3 ... 39 40 41 42 ... 59 59 60

Scan 961 962 963 ... 999 1000 941 942 ... 958 959 960

In this case, because the total number of scans is not an even multiple of the buffer size, the oldest scan is
not at the beginning of the buffer and the last scan is not at the end of the buffer.
daqAdcBufferRotate can rearrange the scans into their natural, chronological order:

Buffer
Position

1 2 3 ... 39 40 41 42 ... 59 59 60

Scan 941 942 943 ... 979 980 981 982 ... 998 999 1000

If the total number of acquired scans is no greater than the buffer size, then the scans have not overwritten
earlier scans and the buffer is already in chronological order. In this case, daqAdcBufferRotate does
not modify the buffer.

Note: daqAdcBufferRotate only works on unpacked samples.

11-4 daqCommand Reference (Enhanced API) TempBook User’s Manual

daqAdcCalcTrig
DLL Function daqAdcCalcTrig(DaqHandleT handle, BOOL bipolar, FLOAT gainVal, FLOAT

voltageLevel, PWORD triggerLevel);
C daqAdcCalcTrig(DaqHandleT handle, BOOL bipolar, FLOAT gainVal, FLOAT

voltageLevel, PWORD triggerLevel);
Visual BASIC VBdaqAdcCalcTrig&(ByVal handle&, ByVal bipolar&, ByVal gainVal!, ByVal

voltageLevel!, triggerLevel%)
Delphi daqAdcCalcTrig(handle:DaqHandleT; bipolar:longbool; gainVal:single;

voltageLevel:single; var triggerLevel:DWORD)
Parameters
handle Handle to the device for which the trigger level is to be calculated
bipolar A flag that should be non-zero if the trigger channel is bipolar, or zero if it is unipolar
gainVal A gain value of the trigger channel
voltageLevel Voltage level to trigger at.
triggerLevel Returned count to program the trigger using the daqAdcSetTrig function
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqAdcSetTrig
Program References None
Used With All devices

daqAdcCalcTrig calculates the trigger level and source for an analog trigger. The result of
daqAdcCalcTrig is the triggerLevel parameter. The triggerLevel parameter can then
be passed to the daqAdcSetTrig function to configure the analog trigger.

The triggerLevel parameter is calculated from: the unipolar/bipolar and gain settings of the
trigger channel, the desired analog voltage setpoint and trigger polarity, and the external reference
voltage of D/A channel 1. The trigger channel is automatically the first channel in the current A/D
scan group for DaqBooks and DaqBoards.

The bipolar parameter should be set according to the current bipolar/unipolar setting of the
trigger channel. This parameter is jumper-selectable when using a DaqBook/100/112 and
DaqBoard/100A/112A and software-programmable when using the DaqBook/200/200A.

The gainVal parameter sent to the daqAdcCalcTrig should be the actual gain of the trigger
channel, not the gain definition used by the rest of the Daq* A/D functions. For example, if the
trigger channel uses the gain definition DgainX8, the gain parameter of daqAdcCalcTrig
should be 8.

The voltageLevel defines the analog voltage at which the Daq* will trigger. The setpoint must
be within the valid input range of the trigger channel. For example, the setpoint range for a bipolar
channel with unity gain would be 0 to 10 V (for ×8 gain, the range would be 0 to 1.25 V) for a
DaqBook or a DaqBoard. Note: When using the Daq PCMCIA, the bipolar parameter is ignored.

daqAdcDisarm
DLL Function daqAdcDisarm(DaqHandleT handle);
C daqAdcDisarm(DaqHandleT handle);
Visual BASIC VBdaqAdcDisarm&(ByVal handle&)
Delphi daqAdcDisarm(handle:DaqHandleT)
Parameters
handle handle to the device to disable ADC acquisitions
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqAdcArm
Program References None
Used With All devices

daqAdcDisarm allows you to disarm an ADC acquisition if one is currently active.
• If the specified trigger event has not yet occurred, the trigger event will be disabled and no

ADC acquisition will be performed.
• If the trigger event has occurred, the acquisition will be halted and the data transfer stopped

and no more ADC data will be collected.

TempBook User’s Manual daqCommand Reference (Enhanced API) 11-5

daqAdcGetFreq
DLL Function daqAdcGetFreq(DaqHandleT handle, PFLOAT freq);
C daqAdcGetFreq(DaqHandleT handle, PFLOAT freq);
Visual BASIC VBdaqAdcGetFreq&(ByVal handle&, freq!)
Delphi daqAdcGetFreq(handle:DaqHandleT; var freq:single)
Parameters
handle Handle to the device for which to get the current frequency setting
freq A variable to hold the currently defined sampling frequency in Hz

Valid values: 100000.0 - 0.0002
Returns DerrNoError - No errors (also, refer to API Error Codes on page 11-39)
See Also daqAdcSetFreq, daqAdcSetClock
Program References None
Used With All devices

daqAdcGetFreq reads the sampling frequency of the pacer clock.

Note: daqAdcSetFreq assumes that the 1 MHz/10 MHz jumper is set to the default position of 1
MHz.

daqAdcGetScan
DLL Function daqAdcGetScan(DaqHandleT handle, PDWORD channels, DaqAdcGain *gains, PDWORD

flags, PDWORD chanCount);
C daqAdcGetScan(DaqHandleT handle, PDWORD channels, DaqAdcGain *gains, PDWORD

flags, PDWORD chanCount);
Visual BASIC VBdaqAdcGetScan&(ByVal handle&, channels&(), gains&(), flags&(), chanCount&)
Delphi daqAdcGetScan(handle:DaqHandleT; channels:PDWORD; gains:DaqAdcGainP;

flags:PDWORD; chanCount:PDWORD)
Parameters
handle Handle to the device for which to get the current scan configuration.
channels An array to hold up to 512 channel numbers or 0 if the channel information is not desired.
*gains An array to hold up to 512 gain values or 0 if the channel gain information is not desired
flags Channel configuration flags in the in the form of a bit mask
chanCount A variable to hold the number of values returned in the chans and gains arrays
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqAdcSetScan, daqAdcSetMux
Program References None
Used With All devices

daqAdcGetScan reads the current scan group consisting of all channels currently configured. The
returned parameter settings directly correspond to those set using the daqAdcSetScan function. For
further description of these parameters, refer to daqAdcSetScan. See ADC Flags Definition
table for channel flag definitions.

11-6 daqCommand Reference (Enhanced API) TempBook User’s Manual

daqAdcRd
DLL Function daqAdcRd(DaqHandleT handle, DWORD chan, PWORD sample, DaqAdcGain gain,

DWORD flags);
C daqAdcRd(DaqHandleT handle, DWORD chan, PWORD sample, DaqAdcGain gain,

DWORD flags);
Visual BASIC VBdaqAdcRd&(ByVal handle&, ByVal chan&, sample%, ByVal gain&, ByVal flags&)
Delphi daqAdcRd(handle:DaqHandleT; chan:DWORD; var sample:WORD; const gain:DaqAdcGain;

flags:DWORD)
Parameters
handle Handle to the device for which the ADC reading is to be acquired
chan A single channel number
sample A pointer to a value where an A/D sample is stored. Valid values: (See daqAdcSetTag)
gain The channel gain
flags Channel configuration flags in the form of a bit mask
Returns DerrFIFOFull - Buffer Overrun

DerrInvGain - Invalid gain
DerrInvChan - Invalid channel
DerrNoError - No Error (also, refer to API Error Codes on page 11-39)

See Also daqAdcSetMux, daqAdcSetTrig, daqAdcSoftTrig
Program References DACEX.PAS (Delphi)
Used With All devices

daqAdcRd is used to take a single reading from the given local A/D channel. This function will use
a software trigger to immediately trigger and acquire one sample from the specified A/D channel.

• The chan parameter indicates the channel for which to take the sample.
• The sample parameter is a pointer to where the collected sample should be stored.
• The gain parameter indicates the channel’s gain setting.
• The flags parameter allows the setting of channel-dependent options. See ADC Flags

Definition table for channel flags definitions.

TempBook User’s Manual daqCommand Reference (Enhanced API) 11-7

daqAdcRdN
DLL Function daqAdcRdN(DaqHandleT handle, DWORD chan, PWORD buf, DWORD scanCount,

DaqAdcTriggerSource triggerSource, BOOL rising, WORD level, FLOAT freq,
DaqAdcGain gain, DWORD flags);

C daqAdcRdN(DaqHandleT handle, DWORD chan, PWORD buf, DWORD scanCount,
DaqAdcTriggerSource triggerSource, BOOL rising, WORD level, FLOAT freq,
DaqAdcGain gain, DWORD flags);

Visual BASIC VBdaqAdcRdN&(ByVal handle&, ByVal chan&, buf%(), ByVal scanCount&, ByVal
triggerSource&, ByVal rising&, ByVal level%, ByVal freq!, ByVal gain&, ByVal
flags&)

Delphi daqAdcRdN(handle:DaqHandleT; chan:DWORD; buf:PWORD; scanCount:DWORD;
triggerSource:DaqAdcTriggerSource; rising:longbool; level:WORD; freq:single;
const gain:DaqAdcGain; flags:DWORD)

Parameters
handle Handle to the device for which the ADC channel samples are to be acquired
chan A single channel number
buf An array where the A/D scans will be returned
scanCount The number of scans to be taken

Valid values: 1 - 32767
triggerSource The trigger source
rising Boolean flag to indicate the rising or falling edge for the trigger source
level The trigger level if an analog trigger is specified

Valid values: 0 -4095
freq The sampling frequency in Hz (100000.0 to 0.0002)
gain The channel gain
flags Channel configuration flags in the form of a bit mask
Returns DerrFIFOFull - Buffer overrun

DerrInvGain -Invalid gain
DerrIncChan - Invalid channel
DerrInvTrigSource - Invalid trigger
DerrInvLevel - Invalid level (also, refer to API Error Codes on page 11-39)

See Also daqAdcSetFreq, daqAdcSetMux, daqAdcSetClock, daqAdcSetTrig
Program References None
Used With All devices

daqAdcRdN is used to take multiple scans from a single A/D channel. This function will:
• Configure the pacer clock
• Configure all channels with the specified gain parameter
• Configure all channel options with the channel flags specified
• Arm the trigger
• Acquire count scans from the specified A/D channel
See ADC Flags Definition table (in ADC Miscellaneous Definitions) for channel flags
parameter definition.

11-8 daqCommand Reference (Enhanced API) TempBook User’s Manual

daqAdcRdScan
DLL Function daqAdcRdScan(DaqHandleT handle, DWORD startChan, DWORD endChan, PWORD buf,

DaqAdcGain gain, DWORD flags);
C daqAdcRdScan(DaqHandleT handle, DWORD startChan, DWORD endChan, PWORD buf,

DaqAdcGain gain, DWORD flags);
Visual BASIC VBdaqAdcRdScanN&(ByVal handle&, ByVal startChan&, ByVal endChan&, buf%(), ByVal

scanCount&, ByVal triggerSource&, ByVal rising&, ByVal level%, ByVal freq!,
ByVal gain&, ByVal flags&)

Delphi daqAdcRdScanN(handle:DaqHandleT; startChan:DWORD; endChan:DWORD; buf:PWORD;
scanCount:DWORD; triggerSource:DaqAdcTriggerSource; rising:longbool;
level:WORD; freq:single; const gain:DaqAdcGain; flags:DWORD)

Parameters
handle Handle to the device from which the ADC scan is to be acquired
startChan The starting channel of the scan group
endChan The ending channel of the scan group
buf An array where the A/D scans will be placed
gain The channel gain
flags Channel configuration flags in the form of a bit mask.
Returns DerrInvGain - Invalid gain

DerrInvChan -Invalid channel
DerrNoError - No error (also, refer to API Error Codes on page 11-39)

See Also daqAdcRdNScan, daqAdcSetMux, daqAdcSetClock, daqAdcSetTrig
Program References DACEX.PAS (Delphi)
Used With All devices

daqAdcRdScan reads a single sample from multiple channels. This function will use a software
trigger to immediately trigger and acquire 1 scan consisting of each channel, starting with
startChan and ending with endChan. The gain setting will be applied to all channels. See
ADC Flags Definition table for channel flags definitions.

TempBook User’s Manual daqCommand Reference (Enhanced API) 11-9

daqAdcRdScanN
DLL Function daqAdcRdScanN(DaqHandleT handle, DWORD startChan, DWORD endChan, PWORD buf,

DWORD scanCount, DaqAdcTriggerSource triggerSource, BOOL rising, WORD level,
FLOAT freq, DaqAdcGain gain, DWORD flags);

C daqAdcRdScanN(DaqHandleT handle, DWORD startChan, DWORD endChan, PWORD buf,
DWORD scanCount, DaqAdcTriggerSource triggerSource, BOOL rising, WORD level,
FLOAT freq, DaqAdcGain gain, DWORD flags);

Visual BASIC VBdaqAdcRdScanN&(ByVal handle&, ByVal startChan&, ByVal endChan&, buf%(), ByVal
scanCount&, ByVal triggerSource&, ByVal rising&, ByVal level%, ByVal freq!,
ByVal gain&, ByVal flags&)

Delphi daqAdcRdScanN(handle:DaqHandleT; startChan:DWORD; endChan:DWORD; buf:PWORD;
scanCount:DWORD; triggerSource:DaqAdcTriggerSource; rising:longbool;
level:WORD; freq:single; const gain:DaqAdcGain; flags:DWORD)

Parameters
handle Handle to the device from which ADC scans are to be acquired
startchan The starting channel of the scan group (see table at end of chapter)
endchan The ending channel of the scan group (see table at end of chapter)
buf An array where the A/D scans will be placed
scanCount The number of scans to be read

Valid values: 1 - 65536
triggerSource The trigger source (see table at end of chapter)
rising Boolean flag to indicate the rising or falling edge for the trigger source
level The trigger level if an analog trigger is specified

Valid values: 0 -4095
freq The sampling frequency in Hz

Valid values: 100000.0 - 0.0002
gain The channel gain (See tables at end of chapter).
flags Channel configuration flags in the form of a bit mask.
Returns DerrInvGain - Invalid gain

DerrInvChan -Invalid channel
DerrInvTrigSource - Invalid trigger
DerrInvLevel - Invalid Level
DerrFIFOFull -Buffer Overrun
DerrNoError - No error (also, refer to API Error Codes on page 11-39)

See Also daqAdcRd, daqAdcRdN, daqAdcRdScan, daqAdcSetClock, daqAdcSetTrig
Program References None
Used With All devices

daqAdcRdScanN reads multiple scans from multiple A/D channels. This function will configure
the pacer clock, arm the trigger and acquire count scans consisting of each channel, starting with
startChan and ending with endChan. The gain setting will be applied to all channels. The
freq parameter is used to set the acquisition frequency. See ADC Flags Definition table for
channel flags parameter definition.

11-10 daqCommand Reference (Enhanced API) TempBook User’s Manual

daqAdcSetAcq
DLL Function daqAdcSetAcq(DaqHandleT handle, DaqAdcAcqMode mode, DWORD preTrigCount, DWORD

postTrigCount);
C daqAdcSetAcq(DaqHandleT handle, DaqAdcAcqMode mode, DWORD preTrigCount, DWORD

postTrigCount);
Visual BASIC VBdaqAdcSetAcq&(ByVal handle&, ByVal mode&, ByVal preTrigCount&, ByVal

postTrigCount&)
Delphi daqAdcSetAcq(handle:DaqHandleT; mode:DaqAdcAcqMode; preTrigCount:DWORD;

postTrigCount:DWORD)
Parameters
handle Handle to the device for which the ADC acquisition is to be configured
mode Selects the mode of the acquisition
preTrigCount Number of pre-trigger ADC scans to be collected
postTrigCount Number of post-trigger ADC scans to be collected
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqAdcArm, daqAdcDisarm, daqAdcSetTrig
Program References ADCEX1.C, DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)
Used With All devices

daqAdcSetAcq allows you to characterize the acquisition mode and the pre- and post-trigger
durations. The mode parameter describes the style of data collection. The preTrigCount and
postTrigCount parameters specify the respective durations, or lengths, of the pre-trigger and
post-trigger acquisition states.

Acquisition modes can be defined as follows:
• DaamNShot - Once triggered, continue acquisition until the specified post-trigger count has

been satisfied. Once the post-trigger count has been satisfied, the acquisition will be
automatically disarmed.

• DaamNShotRearm - Once triggered, continue the acquisition for the specified post-trigger
count, then re-arm the acquisition with the same acquisition configuration parameters as
before. The automatic re-arming of the acquisition may be disabled at any time by issuing a
daqAdcDisarm.

• DaamInfinitePost - Once triggered, continue the acquisition indefinitely until the
acquisition is disabled by the daqAdcDisarm function.

• DaamPrePost - Begin collecting the specified number of pre-trigger scans immediately
upon issuance of the daqAdcArm function. The trigger will not be enabled until the
specified number of pre-trigger scans have been collected. Once triggered, the acquisition
will then continue collecting post-trigger data until the post-trigger count has been satisfied.
Once the post-trigger count has been satisfied, the acquisition will be automatically disarmed.

TempBook User’s Manual daqCommand Reference (Enhanced API) 11-11

daqAdcSetDataFormat
DLL Function daqAdcSetDataFormat(DaqHandleT handle, DaqAdcRawDataFormatT rawFormat,

DaqAdcPostProcDataFormatT postProcFormat);
C daqAdcSetDataFormat(DaqHandleT handle, DaqAdcRawDataFormatT rawFormat,

DaqAdcPostProcDataFormatT postProcFormat);
Visual BASIC VBdaqAdcSetDataFormat &(ByVal handle&, ByVal rawFormat&, ByVal postProcFormat&)
Delphi daqAdcSetDataFormat(Handle:DaqHandleT; rawFormat:DaqAdcRawDataFormatT rawFormat;

postProcFormat:DaqAdcPostProcDataFormatT);
Parameters
handle The handle to the device for which to set the option
rawFormat The channel number on the device for which the option is to be set
postProcFormat Flags specifying the options to use
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqCvtRawDataFormat,daqCvtRawDataFormat
Program References None
Used With All devices

daqAdcSetDataFormat allows the setting of the raw and the post-acquisition data formats
which will be returned by the acquisition transfer functions. Note: Certain devices may be limited to
the types of raw and post-acquisition data formats which can be presented.

The rawFormat parameter indicates how the raw data format is to be presented. Normally, the
raw-data format represents the data from the A/D converter. The default value for this parameter is
DardfNative where the raw-data format follows the native-data format of the A/D for the
particular device. An optional parameter is DardfPacked where raw A/D values are compressed
to make full use of all unused bits for any native format that leaves unused bits in the byte-aligned
count value. For instance, a 12-bit raw A/D value (which would normally be represented in a 16-bit
word, 2-byte count value) will be compressed so that 4 12-bit A/D raw counts can be represented in
3 16-bit word count values. The TempBook/66 supports this packed format (used with the generic
functions of the form daqAdcTransfer…).

The postProcFormat parameter specifies the format for which post-acquisition data will be
presented. This format is used by the one-step functions of the form daqAdcRd…. The default
value is DappdfRaw where the post-acquisition data format will follow the rawFormat
parameter.

11-12 daqCommand Reference (Enhanced API) TempBook User’s Manual

daqAdcSetDiskFile
DLL Function daqAdcSetDiskFile(DaqHandleT handle, LPSTR filename, DaqAdcOpenMode openMode,

DWORD preWrite);
C daqAdcSetDiskFile(DaqHandleT handle, LPSTR filename, DaqAdcOpenMode openMode,

DWORD preWrite);
Visual BASIC VBdaqAdcSetDiskFile&(ByVal handle&, ByVal filename$, ByVal openMode&, ByVal

preWrite&)
Delphi daqAdcSetDiskFile(handle:DaqHandleT; filename:PChar; openMode:DaqAdcOpenMode;

preWrite:DWORD)
Parameters
handle Handle to the device for which direct to disk ADC acquisition is to be performed.
filename String representing the path and name of the file to place the raw ADC acquisition data.
openMode Specifies how to open the file for writing
preWrite Specifies the amount to pre-write(in bytes) the file
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqAdcTransferGetStat, daqAdcTransferSetBuffer, daqAdcTransferStart,

daqAdcTransferStop
Program References ADCEX1.C, DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)
Used With All devices

daqAdcSetDiskFile allows you to set a destination file for ADC data transfers. ADC data
transfers will be directed to the specified disk file. The filename parameter is a string
representing the path\name of the file to be opened. The openMode parameter indicates how the
file is to be opened for writing data. Valid file open modes are defined as follows:

• DaomAppendFile - Open an existing file to append subsequent ADC transfers. This mode
should only be used when the existing file has a similar ADC channel group configuration as
the subsequent transfers.

• DoamWriteFile - Rewrite or write over an existing file. This operation will destroy the
original contents of the file.

• DoamCreateFile- Create a new file for subsequent ADC transfers. This mode does not
require that the file exist beforehand.

The preWrite parameter may, optionally, be used to specify the amount that the file is to be pre-
written before the actual data collection begins. Specifying the pre-write amount may increase the
data-to-disk performance of the acquisition if it is known beforehand how much data will be
collected. If no pre-write is to be done, then the preWrite parameter should be set to 0.

daqAdcSetFreq
DLL Function daqAdcSetFreq(DaqHandleT handle, FLOAT freq);
C daqAdcSetFreq(DaqHandleT handle, FLOAT freq);
Visual BASIC VBdaqAdcSetFreq&(ByVal handle&, ByVal freq!)
Delphi daqAdcSetFreq(handle:DaqHandleT; freq:single)
Parameters
handle Handle to the device for which the ADC acquisition frequency is to be set.
freq The sampling frequency in Hz

Valid values: 100000.0 - 0.0002
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqAdcGetFreq, daqAdcSetClockSource
Program References ADCEX1.C, DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)
Used With All devices

daqAdcSetFreq calculates and sets the frequency of the pacer clock using the frequency
specified in Hz. The frequency is converted to two counter values that control the frequency of the
pacer clock (in this conversion, some resolution of the frequency may be lost). daqAdcRdFreq
can be used to read the exact frequency setting of the pacer clock. daqAdcSetClock can be used
to explicitly set the two counter values of the pacer clock. The pacer clock can be used to control
the sampling rate of the A/D converter.

TempBook User’s Manual daqCommand Reference (Enhanced API) 11-13

daqAdcSetMux
DLL Function daqAdcSetMux(DaqHandleT handle, DWORD startChan, DWORD endChan, DaqAdcGain gain,

DWORD flags);
C daqAdcSetMux(DaqHandleT handle, DWORD startChan, DWORD endChan, DaqAdcGain gain,

DWORD flags);
Visual BASIC VBdaqAdcSetMux&(ByVal handle&, ByVal startChan&, ByVal endChan&, ByVal gain&,

ByVal flags&)
Delphi daqAdcSetMux(handle:DaqHandleT; startChan:DWORD; endChan:DWORD; const

gain:DaqAdcGain; flags:DWORD)
Parameters
handle Handle to the device for which to configure the ADC channel scan group
startChan The starting channel of the scan group
endChan The ending channel of the scan group
gain The gain value for all channels
flags Channel configuration flags in the form of a bit mask
Returns DerrInvGain - Invalid gain

DerrIncChan - Invalid channel
DerrNoError - No error (also, refer to API Error Codes on page 11-39)

See Also daqAdcSetScan, daqAdcGetScan
Program References DACEX1.C, DAQEX.FRM (VB)
Used With All devices

daqAdcSetMux sets a simple scan sequence of local A/D channels from startChan to
endChan with the specified gain value. This command provides a simple alternative to
daqAdcSetScan if only consecutive channels need to be acquired. The flags parameter is used
to set channel dependent options. See ADC Flags Definition table for channel flags definitions.

daqAdcSetRate
DLL Function daqAdcSetRate(DaqHandleT handle, DaqAdcRateMode mode, DaqAdcAcqState acqState,

FLOAT reqRate, PFLOAT actualRate);
C daqAdcSetRate(DaqHandleT handle, DaqAdcRateMode mode, DaqAdcAcqState acqState,

FLOAT reqRate, PFLOAT actualRate);
Visual BASIC VBdaqAdcSetRate(ByVal handle&, ByVal mode&, ByVal acqState&, ByVal reqRate!,

actualRate!);
Delphi daqAdcSetRate(handle: DaqHandleT; mode: DaqAdcRateMode, acqState:

DaqAdcAcqState; reqRate:FLOAT; actualRate:PFLOAT);
Parameters
handle Handle to the device for which to set ADC scanning frequency.
mode Specifies the rate mode (frequency or period).
acqState Specifies the acquisition state to which the rate is to be applied.
reqRate Specifies the requested rate.
actualRate Returns the actual rate applied. This may be different from the requested rate.
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqAdcSetAcq, daqAdcSetTrig, daqAdcArm, daqAdcSetFreq, daqAdcGetFreq
Program References
Used With All devices

daqAdcSetRate configures the ADC scan rate using the rate mode specified by the mode
parameter. Currently, the valid modes are:

• DarmPeriod - Defines the requested rate to be in periods/sec.
• • DarmFrequency - Defines the requested rate to be a frequency.

This function will set the ADC acquisition rate requested by the reqRate parameter for the
acquisition state specified by the acqState parameter. Currently, the following acquisition states
are valid:

• DaasPreTrig - Sets the pre-trigger ADC acquisition rate to the requested rate.
• DaasPostTrig - Sets the post-trigger ADC acquisition rate to the requested rate.

If the requested rate is unattainable on the specified device, a rate will be automatically adjusted to
the device’s closest attainable rate. If this occurs, the actualRate parameter will return the actual
rate for which the device has been programmed.

11-14 daqCommand Reference (Enhanced API) TempBook User’s Manual

daqAdcSetScan
DLL Function daqAdcSetScan(DaqHandleT handle, PDWORD channels, DaqAdcGain *gains, PDWORD

flags, DWORD chanCount);
C daqAdcSetScan(DaqHandleT handle, PDWORD channels, DaqAdcGain *gains, PDWORD

flags, DWORD chanCount);
Visual BASIC VBdaqAdcSetScan&(ByVal handle&, channels&(), gains&(), flags&(), ByVal

chanCount&)
Delphi daqAdcSetScan(handle:DaqHandleT; channels:PDWORD; gains:DaqAdcGainP;

flags:PDWORD; chanCount:DWORD)
Parameters
handle Handle to the device for which ADC scan group is to be configured
channels An array of up to 512 channel numbers
*gains An array of up to 512 gain values
flags Channel configuration flags in the form of a bit mask
chanCount The number of values in the chans and gains arrays

Valid values: 1 -512
Returns DerrNotCapable - No high speed digital

DerrInvGain - Invalid gain
DerrInvChan - Invalid channel
DerrNoError - No error (also, refer to API Error Codes on page 11-39)

See Also daqAdcGetScan, daqAdcSetMux
Program References ADCEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)
Used With All devices

DaqAdcSetScan configures an A/D scan group consisting of multiple channels. As many as 512
channel entries can be made in the A/D scan group configuration. Any analog input channel can be
included in the scan group configuration at any valid gain setting. Scan group configuration may be
composed of local or expansion channels and (for the DaqBook/DaqBoard) the high-speed digital
I/O port.

The channels parameter is a pointer to an array of up to 512 channel values. Each entry
represents a channel number in the scan group configuration. Channels can be entered multiple
times at the same or different gain setting.

The gains parameter is a pointer to an array of up to 512 gain settings. Each gain entry represents
the gain to be used with the corresponding channel entry. Gain entry can be any valid gain setting
for the corresponding channel.

The flags parameter is a pointer to an array of up to 512 channel flag settings. Each flag entry
represents a 4-byte-wide bit map of channel configuration settings for the corresponding channel
entry. The channel flags can be used to set channel specific configuration settings (such as polarity).
See the ADC Flags Definition table for valid channel flag values.

The chanCount parameter represents the total number of channels in the scan group configuration.
This number also represents the number of entries in each of the channels, gains and flags
arrays.

TempBook User’s Manual daqCommand Reference (Enhanced API) 11-15

daqAdcSetTrig
DLL Function daqAdcSetTrig(DaqHandleT handle, DaqAdcTriggerSource triggerSource, BOOL rising,

WORD level, WORD hysteresis, DWORD channel);
C daqAdcSetTrig(DaqHandleT handle, DaqAdcTriggerSource triggerSource, BOOL rising,

WORD level, WORD hysteresis, DWORD channel);
Visual BASIC VBdaqAdcSetTrig&(ByVal handle&, ByVal triggerSource&, ByVal rising&, ByVal

level%, ByVal hysteresis%, ByVal channel&)
Delphi daqAdcSetTrig(handle:DaqHandleT; triggerSource:DaqAdcTriggerSource;

rising:longbool; level:WORD; hysteresis:WORD; channel:DWORD)
Parameters
handle Handle to the device for which the ADC acquisition trigger is to be configured.
triggerSource Sets the trigger source.
rising Boolean flag to indicate the rising or falling edge for the trigger source
level The trigger level (in A/D counts) for an analog level trigger
hysteresis hysteresis value for analog level trigger (if selected)
channel Channel for which the analog level trigger(if selected) is to be detected.
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqAdcSetAcq
Program References ADCEX1.C, DACEX1.C, DAQEX.FRM (VB), ADCEX.PAS, ERREX.PAS (Delphi)
Used With All devices

daqAdcSetTrig sets and arms the trigger of the A/D converter. Several trigger sources and
several mode flags can be used for a variety of acquisitions. daqAdcSetTrig will stop current
acquisitions, empty acquired data, and arm the Daq* using the specified trigger.

Trigger detection for the given trigger source will not begin until the acquisition has been armed
with the daqAdcArm function. Trigger sources may be defined as follows:

• DatsImmediate - Trigger the acquisition immediately upon issuance of the daqAdcArm
function. This trigger mode is used to begin collecting data immediately upon configuration
of the acquisition.

• DatsSoftware - Trigger the acquisition upon issuance of the daqAdcSoftTrig function.
This trigger mode can be used to initiate a trigger upon some form of user or application
program input.

• DatsAdcClock - Trigger the acquisition upon ADC pacer clock input. This trigger mode
can be used to synchronize the trigger event with the ADC pacer clock.

• DatsExternalTTL - Trigger the acquisition upon sensing a rising or falling (depending
on state of rising flag) signal on an external TTL input signal (trig0 - pin 25 on P1).

• DatsHardwareAnalog - Trigger upon detection of a rising or falling (depending on the
state of the rising flag) analog signal (whose count is defined by the level parameter).
This trigger mode is detected in hardware to allow generally faster acquisition frequencies
than the DatsSoftwareAnalog trigger source. However, use of this mode is restricted to
channel level triggering on only the first channel within the channel scan (defined by the
channel parameter). Note: This mode is not available on Daq PCMCIA product lines.

• DatsSoftwareAnalog - Trigger upon detection of a rising or falling (depending on the
state of the rising flag) analog signal (whose count is defined by the level parameter).
This trigger mode is detected in software and generally will not allow the acquisition speeds of
the DatsHardwareAnalog trigger source. However, this mode has no trigger channel
restrictions. Any valid channel in the scan group can be configured as the trigger channel by
specifying it in the channel parameter.

Note: The level parameter is only used for the analog trigger modes. level is a count
representing the A/D count level trigger threshold to be passed through in order to satisfy the analog
trigger event. A number of factors are used to determine its proper value. For help in calculating
this analog count level properly, see the daqAdcCalcTrig function.

11-16 daqCommand Reference (Enhanced API) TempBook User’s Manual

daqAdcSoftTrig
DLL Function daqAdcSoftTrig(DaqHandleT handle);
C daqAdcSoftTrig(DaqHandleT handle);
Visual BASIC VBdaqAdcSoftTrig&(ByVal handle&)
Delphi daqAdcSoftTrig(handle:DaqHandleT)
Parameters
handle Handle to the device to which the ADC software trigger is to be applied
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqAdcSetTrig, daqAdcSetAcq
Program References None
Used With All devices

daqAdcSoftTrig is used to send a software trigger command to the Daq* device. This software
trigger can be used to initiate a scan or an acquisition from a program after configuring the software
trigger as the trigger source. This function may only be used if the trigger source for the acquisition
has been set to DatsSoftware with the daqAdcSetTrig function.

daqAdcTransferBufData

DLL Function daqAdcTransferBufData(DaqHandleT handle, PWORD buf, DWORD scanCount,
DaqAdcBufferXferMask bufMask, PDWORD retCount);

C daqAdcTransferBufData(DaqHandleT handle, PWORD buf, DWORD scanCount,
DaqAdcBufferXferMask bufMask, PDWORD retCount);

Visual BASIC VBdaqAdcTransferBufData(ByVal handle, buf%, ByVal scanCount&, ByVal bufMask&,
retCount&);

Delphi daqAdcTransferBufData(handle: DaqHandleT; buf : PWORD, scanCount : DWORD,
bufMask: DaqAdcBufferXferMask; retCount: PDWORD);

Parameters
handle Handle to the device for which the ADC buffer should be retrieved.
buf Pointer to an application-supplied buffer to place the buffered data.
scanCount Number of scans to retrieve from the acquisition buffer.
bufMask A mask defining operation depending on the current state of the acquisition buffer
retCount A pointer to the total number of scans returned, if any.
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqAdcTransferSetBuffer, daqAdcTransferGetStat
Program References ADCEX9.C, ADCEX10.C
Used With All devices

daqAdcTransferBufData requests a transfer of scanCount scans from the driver-allocated
ADC acquisition buffer to the specified user-supplied buffer. The bufMask parameter can be used
to specify the conditions for the transfer as follows:

• DabtmWait - Instructs the function to wait until the requested number of scans are available
in the driver-allocated acquisition buffer. When the requested number of scans are available,
the function will return with retCount set to scanCount, the number of scans requested.
ADC data will be returned in the memory referred to by the buf parameter.

• DabtmNoWait - Instructs the function to return immediately if the specified number of scans
are not available when the function is called. If the entire amount requested is not available,
the function will return with no data and retCount will be set to 0. If the requested number
of scans are available in ADC acquisition buffer, the function will return with retCount set
to scanCount, the number of scans requested. ADC data will be returned in the memory
referred to by the buf parameter.

• DabtmRetAvail - Instructs the function to return immediately, regardless of the number of
scans available in the driver-allocated acquisition buffer. The retCount parameter will
return the total number of scans retrieved. retCount can return anything from 0 to
scanCount, the number of scans requested. ADC data will be returned in the memory
referred to by the buf parameter.

The driver-allocated acquisition buffer must have been allocated prior to calling this function. This
is performed via the daqAdcTransferSetBuffer. Refer to daqAdcTransferSetBuffer
for more details on specifying the driver-allocated acquisition buffer.

TempBook User’s Manual daqCommand Reference (Enhanced API) 11-17

daqAdcTransferGetStat
DLL Function daqAdcTransferGetStat(DaqHandleT handle, PDWORD active, PDWORD retCount);
C daqAdcTransferGetStat(DaqHandleT handle, PDWORD active, PDWORD retCount);
Visual BASIC VBdaqAdcTransferGetStat&(ByVal handle&, active&, retCount&)
Delphi daqAdcTransferGetStat(handle:DaqHandleT; var active:DWORD; var retCount:DWORD)
Parameters
handle Handle to the device for which ADC transfer status is to be retrieved
active A pointer to the transfer-state flags in the form of a bit mask
retCount A pointer to the total number of ADC scans acquired (or available) in the current transfer
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqAdcTransferSetBuffer, daqAdcTransferStart, daqAdcTransferStop
Program References ADCEX1.C, DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)
Used With All devices

daqAdcTransferGetStat allows you to retrieve the current state of an ADC acquisition
transfer.

The active parameter will indicate the current state of the transfer in the form of a bit mask. Refer
to the ADC Acquisition/Transfer Active Flag Definitions (in the ADC Miscellaneous Definitions
table) for valid bit-mask states.

The retCount parameter will return the total number of scans acquired in the current transfer if
the transfer is in user-allocated buffer mode or will return the total number of unread scans in the
acquisition buffer if the transfer is in driver-allocated buffer mode. Refer to the
daqAdcTransferSetBuffer function for more information on buffer allocation modes.

The transfer state and return count values will continue to be updated until any of the following
occurs:

• the transfer count is satisfied
• the transfer is stopped (daqAdcStopTransfer)
• the acquisition is disarmed (daqDisarm)

11-18 daqCommand Reference (Enhanced API) TempBook User’s Manual

daqAdcTransferSetBuffer
DLL Function DaqAdcTransferSetBuffer(DaqHandleT handle, PWORD buf, DWORD scanCount, DWORD

transferMask);
C DaqAdcTransferSetBuffer(DaqHandleT handle, PWORD buf, DWORD scanCount, DWORD

transferMask);
Visual BASIC VBdaqAdcTransferSetBufferAllocMem&(ByVal handle&, ByVal scanCount&, ByVal

transferMask&)
Delphi daqAdcTransferSetBufferAllocMem(handle:DaqHandleT; scanCount:DWORD;

transferMask:DWORD)
Parameters
handle Handle to the device for which an ADC transfer is to be performed.
buf Pointer to the buffer for which the acquired data is to be placed.
scanCount The total length of the buffer (in scans).
transferMask Configures the buffer transfer mode.
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqAdcTransferStart, daqAdcTransferStop, daqAdcTransferGetStat, daqAdcSetAcq,

daqAdcTransferBufData
Program References ADCEX1.C, DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi), ADCEX9.C, ADCEX10.C
Used With All devices

daqAdcTransferSetBuffer allows you to configure transfer buffers for ADC data
acquisition. This function can be used to configure the specified user- or driver-allocated buffers for
subsequent ADC transfers.

If a user-allocated buffer is to be used, two conditions apply:
• The buffer specified by the buf parameter must have already been allocated by the user

prior to calling this function.
• The allocated buffer must be large enough to hold the number of ADC scans as determined

by the current ADC scan group configuration.

The scanCount parameter is the total length of the transfer buffer in scans. The scan size is
determined by the current scan group configuration. Refer to the daqAdcSetScan and
daqAdcSetMux functions for further information on scan group configuration.

The character of the transfer can be configured via the transferMask parameter. Among other
things, the transferMask specifies the update, layout/usage, and allocation modes of the buffer.
The modes can be set as follows:

• DatmCycleOn - Specifies the buffer to be a circular buffer in buffer-cycle mode; allows the
transfer to continue when the end of the transfer buffer is reached by wrapping the transfer of
ADC data back to the beginning of the buffer. In this mode, the ADC transfer buffer will
continue to be wrapped until the post-trigger count has been reached (specified by
daqAdcSetAcq) or the transfer/acquisition is halted by the application
(daqAdcTransferStop, daqAdcDisarm). The default setting is DatmCycleOff.

• DatmUpdateSingle - Specifies the update mode as single sample. The update mode can
be set to update for every sample or for every block of ADC data. The update-on-single
setting allows the ADC transfer buffer to be updated for each sample collected by the ADC.
Compared to the block mode, this setting provides a higher degree of real-time transfer-buffer
updating at the expense of slower aggregate-data throughput rates. The default setting is
DatmUpdateBlock.

• DatmDriverBuf - Specifies that the driver allocate the ADC acquisition buffer as a circular
buffer whose length is determined by the scanCount parameter with current scan group
configuration. This option allows the driver to manage the circular acquisition buffer rather
than placing the burden of buffer management on the user. This option should be used with
the daqAdcTransferBufData to access the ADC acquisition buffer. The
daqAdcTransferStop or the daqAdcDisarm function will stop the current transfer and
de-allocate the driver-supplied ADC acquisition buffer. The default setting is
DatmUserBuf. The DatmUserBuf option specifies a user-allocated ADC acquisition
buffer. Here, buffer management must be done in user code. This option should be used with
the daqAdcTransferStart function to perform the ADC data transfer operation.

TempBook User’s Manual daqCommand Reference (Enhanced API) 11-19

daqAdcTransferStart
DLL Function daqAdcTransferStart(DaqHandleT handle);
C daqAdcTransferStart(DaqHandleT handle);
Visual BASIC VBdaqAdcTransferStart&(ByVal handle&)
Delphi daqAdcTransferStart(handle:DaqHandleT)
Parameters
handle Handle to the device to initiate an ADC transfer
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqAdcTranferSetBuffer, daqAdcTransferGetStat, daqAdcTransferStop
Program References ADCEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)
Used With All devices

daqAdcTransferStart allows you to initiate an ADC acquisition transfer. The transfer will be
performed under the current active acquisition. If no acquisition is currently active, the transfer will
not initiate until an acquisition becomes active (via the daqAdcArm function). The transfer will be
characterized by the current settings for the transfer buffer. The transfer buffer can be configured
via the daqAdcSetTransferBuffer function.

daqAdcTransferStop
DLL Function daqAdcTransferStop(DaqHandleT handle);
C daqAdcTransferStop(DaqHandleT handle);
Visual BASIC VBdaqAdcTransferStop&(ByVal handle&)
Delphi daqAdcTransferStop(handle:DaqHandleT)
Parameters
handle Handle to the device for which the Adc data transfer is to be stopped
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqAdcTransferSetBuffer, daqAdcTransferStart, daqAdcTransferGetStat
Program References None
Used With All devices

daqAdcTransferStop allows you to stop a current ADC buffer transfer, if one is active. The
current transfer will be halted and no more data will transfer into the transfer buffer. Though the
transfer is stopped, the acquisition will remain active. Transfers can be re-initiated with
daqAdcStartTransfer after the stop, as long as the current acquisition remains active. The
acquisition can be halted by calling the daqAdcDisarm function.

daqAutoZeroCompensate
DLL Function daqAutoZeroCompensate(BOOL zero);
C daqAutoZeroCompensate(BOOL zero);
Visual BASIC VBdaqAutoZeroCompensate&(ByVal zero&)
Delphi daqAutoZeroCompensate(zero:longbool)
Parameters
zero If non-zero will enable auto zero compensation in the daqCvtTC... functions
Returns DerrZCInvParam - Invalid parameter value

DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqZeroSetup, daqZeroConvert, daqZeroSetupConvert, daqCvtTCSetup,

daqCvtTCConvert, daqcvtTcSetupConvert
Program References None
Used With All devices

daqAutoZeroCompensate will configure the thermocouple linearization functions to
automatically perform zero compensation. This is the easiest way to use zero compensation with the
TempBook. When enabled, the thermocouple conversion functions will require a CJC zero reading
and a TC zero reading to precede the actual CJC and TC reading. This can easily be done by
configuring the scan group to read:

• channel 18 using the TempBook CJC gain code (CJC zero)
• channel 18 using the gain code of the connected TC (TC zero)
• channel 16 using the TempBook CJC gain code (CJC)
• and finally, the thermocouple channels using the gain code of the connected thermocouples.

Note: the offset of the real CJC value should be specified (not the offset of the CJC zero) when
calling the thermocouple linearization setup functions.

11-20 daqCommand Reference (Enhanced API) TempBook User’s Manual

daqClose
DLL Function daqClose(DaqHandleT handle);
C daqClose(DaqHandleT handle);
Visual BASIC VBdaqClose&(ByVal handle&)
Delphi daqClose(handle:DaqHandleT)
Parameters
handle Handle to the device to be closed
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqOpen
Program References ADCEX1.C, DACEX1.C, DIGEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS, ERREX.PAS (Delphi)
Used With All devices

daqClose is used to close a Daq* device. Once the specified device has been closed, no
subsequent communication with the device can be performed. In order to re-establish
communications with a closed device, the device must be re-opened with the daqOpen function.

daqCvtRawDataFormat
DLL Function daqCvtRawDataFormat(PWORD buf, DaqAdcCvtAction action, DWORD lastRetCount, DWORD

scanCount, DWORD chanCount);
C daqCvtRawDataFormat(PWORD buf, DaqAdcCvtAction action, DWORD lastRetCount, DWORD

scanCount, DWORD chanCount);
Visual BASIC VBdaqCvtRawDataFormat&(buf%, ByVal action&, ByVal lastRetCount&,ByVal

scanCount&, ByVal chanCount&)
Delphi daqCvtRawDataFormat(PWORD buf, action:DaqAdcCvtAction; lastRetCount:DWORD;

scanCount:DWORD: chanCount:DWORD);
Parameters
buf Pointer to the buffer containing the raw data
action The type of conversion action to perform on the raw data
lastRetCount The last retCount returned from daqAdcTransferGetStat
scanCount The length of the raw data buffer in scans
chanCount The number of channels per scan in the raw data buffer
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqAdcSetDataFormat
Program References None
Used With All devices

daqCvtRawDataFormat allows the conversion of raw data to a specified format. This function
should be called after the raw data has been acquired. See the transfer data functions
(daqAdcTransfer…) for more details on the actual collection of raw data.

The buf parameter specifies the pointer to the data buffer containing the raw data. Prior to calling
this function, this user-allocated buffer should already contain the entire raw data transfer. Upon
completion, this data buffer will contain the converted data (the buffer must be able to contain all the
converted data).

The action parameter specifies the type of conversion to perform. The DacaUnpack value can
be used de-compress raw data. The DacaRotate can be used to reformat a circular buffer into a
linear buffer.

The scanCount parameter specifies the length of the raw buffer in scans. Since the converted data
will overwrite the raw data in the buffer, make sure the specified buffer is large enough, physically,
to contain all of the converted data.

The chanCount parameter specifies the number of channels in each scan.

TempBook User’s Manual daqCommand Reference (Enhanced API) 11-21

daqCvtSetAdcRange
DLL Function daqCvtSetAdcRange(FLOAT Admin, FLOAT Admax);
C daqCvtSetAdcRange(FLOAT Admin, FLOAT Admax);
Visual BASIC VBdaqCvtSetAdcRange&(ByVal ADmin!, ByVal ADmax!)
Delphi daqCvtSetAdcRange(Admin:single; Admax:single)
Parameters
Admin A/D minimum voltage range
Admax A/D maximum voltage range
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also
Program References None
Used With All devices

daqCvtSetAdcRange allows you to set the current ADC range for use by the daqCvt…
functions. This function should not need to be called if used for data collected by the Daq* devices.

11-22 daqCommand Reference (Enhanced API) TempBook User’s Manual

daqCvtTCConvert
DLL Function daqCvtTCConvert(PWORD counts, DWORD scans, PSHORT temp, DWORD ntemp);
C daqCvtTCConvert(PWORD counts, DWORD scans, PSHORT temp, DWORD ntemp);
Visual BASIC VBdaqCvtTCConvert&(counts%(), ByVal scans&, temp%(), ByVal ntemp&)
Delphi daqCvtTCConvert(counts:PWORD; scans:DWORD; temp:PWORD; ntemp:DWORD)
Parameters
counts An array of one or more scans of raw data as received from the device. The ADC data bits are in the 12

most significant bits of the 16-bit integers, and the tag bits (which are discarded) are in the 4 least-
significant bits.

Valid range: Each raw data item may be any 16-bit value.
scans The number of scans of data in counts array.

Valid range: 1 to 32768/nscan (counts is limited to 64 Kbytes).
temp Variable array to hold converted temperature results. The integer values are 10 times the temperatures in

°C. For example, 50°C would be represented as 500 and -10°C would be -100.
Valid range: Results range from -2000 (-200°C) to +13720 (+1372°C) depending on the thermocouple type.

ntemp The number of entries in the temperature array. This value is checked by the functions to avoid writing past
the end of the array.

Valid range: If avg is 0, then ntc or greater. If avg is non-zero, then scans * ntc or greater.
Returns DerrTCE_NOSETUP - Setup was not called

DerrTCE_PARAM - Parameter out of range
DerrNoError - No Error (also, refer to API Error Codes on page 11-39)

See Also DaqCvtTCSetup, DaqCvtTCSetupConvert
Program References None
Used With All devices

daqCvtTCConvert takes raw A/D readings and converts them to temperature readings in tenths of
degrees Celsius (0.1°C). The total number of conversions (scan * chans/scan) must be less than 32K. The
Daq* measures thermocouple temperatures by way of a TempBook that includes a cold-junction
compensation circuit (CJC) attached to channel 0. Channel 1 is shorted for performing auto-zero
compensation. Channels 2 through 15 accept thermocouples for temperature measurement. Up to 16
expansion cards may be attached to a single Daq* to measure a maximum of 224 (16×14) temperatures.
The software supports type J, K, T, E, N28, N14, S, R and B thermocouples.

Two software techniques (calibration and zero compensation) can be used to increase the accuracy of the
TempBook:

• Software calibration uses gain and offset calibration constants, unique to each card, to compensate for
inherent errors on the card.

• Zero compensation is a method by which any offset voltage on the card can be removed at run-time.
 This is done by measuring a shorted channel at the same gain on the actual input to find the offset,
and subtracting this value from the actual reading.

The thermocouple linearization function has a special auto-zero compensation feature that will perform zero
compensation on the raw thermocouple data before linearizing when using a TempBook. The auto-zero
feature is enabled by default, but can be disabled using the daqAutoZeroCompensate function. It is
not available when using unipolar mode.

The temperature measurement conversion functions are designed for temperature measurement where:
• The cold-junction compensation circuit (CJC) channel (channel 0) reading from the T/C card is

immediately followed in the scan sequence by the T/C channel readings, all of which must be from
the same type of T/C (including: J, K, T, E, N28, N14, S, R, or B).

• If a TempBook is used with auto-zeroing enabled, the CJC channel reading described above must be
preceded by 2 readings from the shorted channel (channel 1). The first shorted reading must be at the
same gain setting as the CJC reading. The other shorted reading must be at the gain of the T/C to be
converted.

• If software calibration is used with the TempBook, the calibration constants for the card to be used
should be entered into the calibration file.

• The CJC and T/C readings are taken with the optimal gains (as described below).
• All non-thermocouple data conversion, if any, must be done by other means.

TempBook User’s Manual daqCommand Reference (Enhanced API) 11-23

The temperature conversion functions take input data from one or more scans from the Daq*. They then
examine the CJC and thermocouple readings within that scan and, after optional averaging, convert them to
temperatures which are stored as output. For example, see the readings in the table.

The first 2 readings of each scan are
non-temperature voltage readings to
compensate for the CJC circuit and
the shorted channel 0. The third
reading is from the CJC, and the
remaining 3 readings are from 3 type
J thermocouples. If the auto-zero feature is disabled, the first 2 readings will be ignored. Otherwise, the
first 2 readings will be used to remove offset errors in the CJC and T/C reading. The CJC and T/C readings
are used to produce one temperature result for each T/C reading. Thus, the 24 original readings are reduced
to 12 temperatures.

The conversion process has 2 steps: setup and conversion. Setup describes the characteristics of the
temperature measurement, and Conversion changes the raw readings into temperatures. All of the functions
return error codes as defined in Daqx.h which also includes the function prototypes and the definitions of
the thermocouple-type codes.

To measure temperatures, the scan must be set up so the T/C measurements consecutively follow their
corresponding CJC measurement (the CJC measurement need not be the first element in the scan). If auto-
zeroing is enabled, the CJC measurement must be preceded by both a CJC zero measurement and a T/C
zero measurement.

All of the thermocouples converted with a single invocation of the conversion functions must be of the same
type: J, K, T, E, N28, N14, S, R, or B. To measure with more than one type of thermocouple, they must be
sorted by type within the scan, and each type must be preceded by the related CJC.

The scan is not restricted to
thermocouple measurements. The
scan may include other types of
signals such as voltage, current, or
digital input; but conversion of
these readings is up to you. The
temperature conversion functions
cannot handle them.

The temperature measurements
must be made with the correct
gain settings. The gain settings
for the different thermocouple
types depend on the channel type and the bipolar/unipolar setting of the Daq* as specified in the table.
Note: Unipolar operations are not recommended for thermocouple measurement unless the measured
temperatures will be greater than the Daq* temperature.

When measuring thermocouples using the gains above, the following temperature ranges apply.

Reading
Scan 0 1 2 3 4 5

1 V or CJC Zero V or J Zero CJC J1a J1b J1c
2 V or CJC Zero V or J Zero CJC J2a J2b J2c
3 V or CJC Zero V or J Zero CJC J3a J3b J3c
4 V or CJC Zero V or J Zero CJC J4a J4b J4c

Gain Codes
Type Unipolar Gain

Code
Unipolar

Gain
Bipolar Gain

Code
Bipolar

Gain
CJC TbkUniCJC TgainX100 TbkBiCJC TgainX50
J TbkUniTypeJ TgainX200 TbkBiTypeJ TgainX100
K TbkUniTypeK TgainX200 TbkBiTypeK TgainX100
T TbkUniTypeT TgainX200 TbkBiTypeT TgainX200
E TbkUniTypeE TgainX100 TbkBiTypeE TgainX50
N28 TbkUniTypeN28 TgainX200 TbkBiTypeN28 TgainX100
N14 TbkUniTypeN14 TgainX200 TbkBiTypeN14 TgainX100
S TbkUniTypeS TgainX200 TbkBiTypeS TgainX200
R TbkUniTypeR TgainX200 TbkBiTypeR TgainX200
B TbkUniTypeB TgainX200 TbkBiTypeB TgainX200

Thermocouple mV Outputs For Temperature Ranges Depending on Ambient Temperature
T/C

Type
Measured Temperature Range

@ 0°C ambient
Measured Temperature Range

@ 25°C ambient
Measured Temperature Range

@ 50°C ambient
Temperature °C 0°C Output (mV) Temperature°C 25°C Output (mV) Temperature°C 50°C Output (mV)

J -200 to 760 -7.9 to 42.9 -200 to 760 -9.2 to 41.6 -200 to 760 -11.8 to 39.0
K -200 to 1372 -5.9 to 54.9 -200 to 1372 -6.9 to 53.9 -200 to 1372 -8.9 to 52.9 (50.0
T -200 to 400 -5.6 to 20.9 -200 to 400 -6.6 to 19.9 -200 to 400 -8.7 to 17.7
E -270 to 1000 -9.8 to 76.4 -270 to 1000 -11.3 to 74.9 -270 to 1000 -14.5 to 71.7

 N28 -270 to 400 -4.3 to 13.0 -270 to 400 -5.0 to 12.3 -270 to 400 -6.4 to 10.9
N14 0 to 1300 0.0 to 47.5 0 to 1300 -0.7 to 46.8 0 to 1300 -2.0 to 45.5

S -50 to 1780 -0.2 to 18.8 -50 to 1780 -0.4 to 18.7 -50 to 1780 -0.7 to 18.4
R -50 to 1780 -0.2 to 21.3 -50 to 1780 -0.4 to 21.1 -50 to 1780 -0.7 to 20.8
B 50 to 1780 0.0 to 13.4 50 to 1780 0.0 to 13.4 50 to 1780 0.0 to 13.4

11-24 daqCommand Reference (Enhanced API) TempBook User’s Manual

daqCvtTCSetup
DLL Function daqCvtTCSetup(DWORD nscan, DWORD cjcPosition, DWORD ntc, TCType tcType, BOOL

bipolar, DWORD avg);
C daqCvtTCSetup(DWORD nscan, DWORD cjcPosition, DWORD ntc, TCType tcType, BOOL

bipolar, DWORD avg);
Visual BASIC VBdaqCvtTCSetup&(ByVal nscan&, ByVal cjcPosition&, ByVal ntc&, ByVal tcType&,

ByVal bipolar&, ByVal avg&)
Delphi daqCvtTCSetup(nscan:DWORD; cjcPosition:DWORD; ntc:DWORD; tcType:TCType;

bipolar:longbool; avg:DWORD)
Parameters
nscan The number of readings in a single scan of DaqBook/DaqBoard data. The daqCvtTC… functions can

convert several consecutive scans worth of data in a single invocation.
Valid range: 2 to 512.

cjcPosition The position of the actual cold-junction compensation circuit (CJC) reading within each scan (not the CJC
zero reading, if any). The first reading of the scan is position 0, and the last reading is nscan -1. Each
scan of temperature data must include a reading of the CJC signal on the expansion board to which the
thermocouples are attached. The CJC readings must be taken with the gain in the section Scan Setup.

Valid range: 0 to nscan-2 with no zero compensation; 2 to nscan-2 with zero compensation.
ntc The number of thermocouple signals that are to be converted to temperature values. The thermocouple

signal readings must immediately follow the CJC reading in the scan data. The first thermocouple signal
is at scan position cjcPosition+1,; the next is at cjcPosition+2,; and so on. Valid range: 1 to nscan-1-
cjcPosition.

tcType The type of thermocouples that generated the measurements. Valid range: One of the pre-defined values,
TbkTCTypeJ, TbkTCTypeK, TbkTCTypeT, TbkTCTypeE, TbkTCTypeN28, TbkTCTypeN14,
TbkTCTypeS, TbkTCTypeR or TbkTCTypeB.

bipolar Must be set true (non-zero) if the readings were acquired with the Daq* set for bipolar operation. Must be
set false (zero) for unipolar operation. The required gain settings for the CJC and thermocouple channels
change depending on the unipolar/bipolar mode. Valid range: 0 for unipolar or any non-zero value for
bipolar.

avg The type of averaging to be performed. Valid range: any unsigned integer. Since the thermocouple voltage
may be small compared to the ambient electrical noise, averaging may be necessary to yield a steady
temperature output.

0 specifies block averaging in which all of the scans are averaged together to compute a single temperature
measurement for each of the ntemp thermocouples.

1 specifies no averaging. Each scan’s readings are converted into ntemp measured temperatures for a
total of scans*ntemp results.

2 or more specifies moving average of the specified number of scans. Scan readings are averaged with the
avg-1 preceding scans’ readings before conversion. The first avg-1 scans are averaged with all of the
preceding scans because they do not have enough preceding scans. For example, if avg is 3, then the
results from the first scan are not averaged at all, the results from the second scan are averaged with the
first scan, the results from the third and subsequent scans are averaged with the preceding two scans as
shown in the table.

Returns DerrTCE_PARAM - Parameter out of range
DerrTCE_TYPE - Invalid thermocouple type
DerrNoError - No Error (also, refer to API Error Codes on page 11-39)

See Also daqCvtTCConvert, daqCvtTCSetupConvert
Program References None
Used With All devices

daqCvtTCSetup sets up parameters for subsequent temperature conversions. The next table
shows how averages are computed.

Scan Readings
from
Channel

Results from Channel

0 1 0 1
1 1A 2A 1A 2A
2 1B 2B (1A+1B)/2 (2A+2B)/2
3 1C 2C (1A+1B+1C)/3 (2A+2B+2C)/3
4 1D 2D (1B+1C+1D)/3 (2B+2C+2D)/3
5 1E 2E (1C+1D+1E)/3 (2C+2D+2E)/3
6 1F 2F (1D+1E+1F)/3 (2D+2E+2F)/3

TempBook User’s Manual daqCommand Reference (Enhanced API) 11-25

daqCvtTCSetupConvert
DLL Function daqCvtTCSetupConvert(DWORD nscan, DWORD cjcPosition, DWORD ntc, TCType tcType,

BOOL bipolar, DWORD avg, PWORD counts, DWORD scans, PSHORT temp, DWORD ntemp);
C daqCvtTCSetupConvert(DWORD nscan, DWORD cjcPosition, DWORD ntc, TCType tcType,

BOOL bipolar, DWORD avg, PWORD counts, DWORD scans, PSHORT temp, DWORD ntemp);
Visual BASIC VBdaqCvtTCSetupConvert&(ByVal nscan&, ByVal cjcPosition&, ByVal ntc&, ByVal

tcType&, ByVal bipolar&, ByVal avg&, counts%(), ByVal scans&, temp%(), ByVal
ntemp&)

Delphi daqCvtTCSetupConvert(nscan:DWORD; cjcPosition:DWORD; ntc:DWORD; tcType:TCType;
bipolar:longbool; avg:DWORD; counts:PWORD; scans:DWORD; temp:PWORD;
ntemp:DWORD)

Parameters
nscan The number of readings in a single scan.

Valid range: 1- 512
cjcPosition The position of the CJC reading within the scan.

Valid range:
16
18, if auto-zeroing is used with the TempBook.

ntc The number of thermocouple readings that immediately follow the CJC reading within the scan.
Valid range: 1 -(nscan-cjcposition-1)

tcType The type of thermocouples being measured.
bipolar Non-zero if the DaqBook/DaqBoard is configured for bipolar readings.
avg The type of averaging to be performed: block, none or moving.
counts The raw data from one or more scans.
scans The number of scans of raw data in counts.
temp The converted temperatures in tenths of a degree C.
ntemp The number of elements provided in the temp array (for error checking).
Returns DerrTCE_PARAM - Parameter out of range

DerrTCE_TYPE - Invalid thermocouple type
DerrNoError - No Error (also, refer to API Error Codes on page 11-39)

See Also DaqCvtTCSetup, daqCvtTCConvert
Program References None
Used With All devices

daqCvtTCSetupConvert sets up and converts raw A/D readings into temperature readings.

daqDefaultErrorHandler
DLL Function daqDefaultErrorHandler(DaqHandleT handle, DaqError errCode);
C daqDefaultErrorHandler(DaqHandleT handle, DaqError errCode);
Visual BASIC VBdaqDefaultErrorHandler(ByVal handle&, ByVal errCode&)
Delphi daqDefaultErrorHandler(handle:DaqHandleT; errCode:DaqError)
Parameters
handle Handle to the device to which the default error handler is to be attached.
ErrCode The error code number of the detected error (see table API Error Codes at end of this chapter).
Returns Nothing (also, refer to API Error Codes on page 11-39)
See Also daqGetLastError, daqProcessError, daqSetDefaultErrorHandler
Program References None
Used With All devices

daqDefaultErrorHandler displays an error message and then exits the application program.
When the Daq* library is loaded, it invokes the default error handler whenever it encounters an
error. The error handler may be changed with daqSetErrorHandler.

11-26 daqCommand Reference (Enhanced API) TempBook User’s Manual

daqFormatError
DLL Function daqCalSelectInputSignal(DaqHandleT handle, DaqCalInputT input);
C daqCalSelectInputSignal(DaqHandleT handle, DaqCalInputT input);
Visual BASIC VBdaqCalSelectInputSignal(ByVal handle&, ByVal input as DaqCalInputT)
Delphi daqCalSelectInputSignal(handle: DaqHandleT; input: DaqCalInputT)
Parameters
daqError Daq* Enhanced API error code
msg Pointer to a string to return the error text
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqSetDefaultErrorHandler, daqSetErrorHandler, daqProcessError, daqGetLastError,

daqDefaultErrorHandler
Program References None
Used With All devices

daqFormatError returns the text-string equivalent for the specified error condition. The error
condition is specified by the daqError parameter. The error text will be returned in the character
string pointed to by the msg parameter. The character string space must have been previously
allocated by the application before calling this function. The allocated character string should be, at
minimum, 64 bytes in length. For more information on specific error codes refer to the API Error
Codes on page 11-39.

daqGetDeviceCount
DLL Function daqGetDeviceCount(PDWORD deviceCount);
C daqGetDeviceCount(PDWORD deviceCount);
Visual BASIC VBdaqGetDevice&(deviceCount&)
Delphi daqGetDeviceCount(var deviceCount:DWORD)
Parameters
deviceCount Pointer to which the device count is to be returned
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqGetDeviceList, daqGetDeviceProperties
Program References None
Used With All devices

daqGetDeviceCount returns the number of currently configured devices. This function will
return the number of devices currently configured in the system. The devices do not need to be
opened for this function to operate properly. If the number returned does not seem appropriate, the
device configuration list should be checked via the Daq* Configuration applet located in the Control
Panel. Refer to the configuration section in your device’s user manual for more details.

daqGetDeviceList
DLL Function daqGetDeviceList(DaqDeviceListT *deviceList, PDWORD deviceCount);
C daqGetDeviceList(DaqDeviceListT *deviceList, PDWORD deviceCount);
Visual BASIC VBdaqGetDeviceList(deviceList as DaqDeviceListT, deviceCount&)
Delphi daqGetDeviceList(var deviceList: DaqDeviceListT; var deviceCount: DWORD)
Parameters
deviceList Pointer to memory location to which the device list is to be returned
deviceCount Number of devices returned in the device list
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqGetDeviceCount, daqGetDeviceProperties, daqOpen,
Program References None
Used With All devices

daqGetDeviceList returns a list of currently configured devices. This function will return the
device names in the deviceList parameter for the number of devices returned by the
deviceCount parameter. Each deviceList entry contains a device name consisting of up to
64 characters. The device name can then be used with the daqOpen function to open the specific
device.

If the number returned does not seem appropriate, the device configuration list should be checked
via the Daq* Configuration applet located in the Control Panel. Refer to the configuration section in
your device’s user manual for more details.

TempBook User’s Manual daqCommand Reference (Enhanced API) 11-27

daqGetDeviceProperties
DLL Function daqGetDeviceProperties(LPSTR daqName, DaqDevicePropsT *deviceProps);
C daqGetDeviceProperties(LPSTR daqName, DaqDevicePropsT *deviceProps);
Visual BASIC VBdaqGetDeviceProperties(daqName$, deviceProps as DaqDevicePropsT)
Delphi daqGetDeviceProperties(daqName: string; var deviceProps: DaqDevicePropsT)
Parameters
daqName Pointer to a character string representing the name of the device for which to retrieve properties
deviceCount Number of devices returned in the device list
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqGetDeviceCount, daqGetDeviceList, daqOpen
Program References None
Used With All devices

daqGetDeviceProperties returns the properties for the specified device. The device is
specified by passing the name of the device in the daqName parameter. This name should be a
valid name of a configured device. The properties for the device are returned in the deviceProps
parameter. deviceProps is a pointer to user-allocated memory which will hold the device-
properties structure. This memory must have been allocated before calling this function.

For detailed device-property structure layout, refer the to Daq Device Properties Definition table.

If this function fails, make sure the daqName parameter references a valid device which is currently
configured. This can be checked via the Daq* Configuration applet located in the Control Panel.
Refer to the configuration section in your device’s user manual for more details.

daqGetDriverVersion
DLL Function daqGetDriverVersion(PDWORD version);
C daqGetDriverVersion(PDWORD version);
Visual BASIC VBdaqGetDriverVersion&(version&)
Delphi daqGetDriverVersion(var version:DWORD)
Parameters
version Pointer to the version number of the current device driver.
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqGetHardwareInfo
Program References ERREX.PAS (Delphi)
Used With All devices

daqGetDriverVersion allows you to get the revision level of the driver currently in use.

daqGetHardwareInfo
DLL Function daqGetHardwareInfo(DaqHandleT handle, DaqHardwareInfo whichInfo, VOID * info);
C daqGetHardwareInfo(DaqHandleT handle, DaqHardwareInfo whichInfo, VOID * info);
Visual BASIC VBdaqGetHardwareInfo&(ByVal handle&, ByVal whichInfo&, info As Variant)
Delphi daqGetHardwareInfo(handle:DaqHandleT; whichInfo:DaqHardwareInfo; info:pointer)
Parameters
handle Handle to the device
whichInfo Specifies what type of device information to retrieve
* info Pointer to the returned device information
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqGetDriverVersion, daqOpen
Program References DACEX.PAS, ERREX.PAS (Delphi)
Used With All devices

daqGetHardwareInfo allows you to retrieve specific hardware information for the specified
device. The device handle must be a valid device handle that is currently open. To open a device,
see the daqOpen function.

11-28 daqCommand Reference (Enhanced API) TempBook User’s Manual

daqGetLastError
DLL Function daqGetLastError(DaqHandleT handle, DaqError *errCode);
C daqGetLastError(DaqHandleT handle, DaqError *errCode);
Visual BASIC VBdaqGetLastError&(ByVal handle&, errCode&)
Delphi daqGetLastError(handle:DaqHandleT; var errCode:DaqError): DaqError; stdcall;

external DAQX_DLL; procedure daqDefaultErrorHandler(handle:DaqHandleT;
errCode:DaqError)

Parameters
handle Handle to the device
*errCode Returned last error code
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqDefaultErrorHandler, daqProcessError, daqSetDefaultErrorHandler
Program References None
Used With All devices

daqGetLastError allows you to retrieve the last error condition registered by the driver.

daqOnline
DLL Function daqOnline(DaqHandleT handle, PBOOL online);
C daqOnline(DaqHandleT handle, PBOOL online);
Visual BASIC VBdaqOnline&(ByVal handle&, online&)
Delphi daqOnline(handle: DaqHandleT; var online: longbool)
Parameters
handle Handle of the device to test for online
online Boolean indicating whether the device is currently online
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqOpen, daqClose
Program References ERREX.PAS (Delphi)
Used With All devices

daqOnline allows you to determine if a device is online. The device handle must be a valid
device handle which has been opened using the daqOpen function. The online parameter
indicates the current online state of the device (TRUE - device online; FALSE - device not online).

daqOpen
DLL Function daqOpen(LPSTR daqName);
C daqOpen(LPSTR daqName);
Visual BASIC VBdaqOpen&(ByVal daqName$)
Delphi daqOpen(devName: PChar)
Parameters
daqName String representing the name of the device to be opened
Returns A handle to the specified device (also, refer to API Error Codes on page 11-39)
See Also daqClose, daqOnline
Program References ADCEX1.C, DIGEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ERREX.PAS, ADCEX.PAS (Delphi)
Used With

daqOpen allows you to open an installed Daq* device for operation. The daqOpen function will
initiate a session for the device name specified by the daqName parameter by opening the device,
initializing it, and preparing it for further operation. The daqName specified must reference a
currently configured device. See Daq* Configuration utility (in the …Installation chapter) for more
details on configuring devices and assigning device names.

daqOpen should be performed prior to any other operation performed on the device. This function
will return a device handle that is used by other functions to reference the device. Once the device
has been opened, the device handle should be used to perform subsequent operations on the device.

Most functions in this manual require a device handle in order to perform their operation. When the
device session is complete, daqClose may be called with the device handle to close the device
session.

TempBook User’s Manual daqCommand Reference (Enhanced API) 11-29

daqProcessError
DLL Function daqProcessError(DaqHandleT handle, DaqError errCode);
C daqProcessError(DaqHandleT handle, DaqError errCode);
Visual BASIC VBdaqProcessError&(ByVal handle&, ByVal errCode&)
Delphi daqProcessError(handle:DaqHandleT; errCode:DaqError)
Parameters
handle Handle to the device for which the specified error is to be processed.
errCode Specifies the device error code to process
Returns Refer to API Error Codes on page 11-39
See Also daqSetDefaultErrorHandler, daqGetLastError, daqDefaultErrorHandler
Program References None
Used With All devices

daqProcessError allows an application to initiate an error for processing by the driver. This
command can be used when it is desirable for the application to initiate processing for a device-
defined error.

daqSetDefaultErrorHandler
DLL Function daqSetDefaultErrorHandler(DaqErrorHandlerFPT handler);
C daqSetDefaultErrorHandler(DaqErrorHandlerFPT handler);
Visual BASIC VBdaqSetDefaultErrorHandler&(ByVal handler&)
Delphi daqSetDefaultErrorHandler(handler:DaqErrorHandlerFPT)
Parameters
handler Pointer to a user-defined error handler function.
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqDefaultErrorHandler, daqGetLastError, daqProcessError, daqSetErrorHandler
Program References ERREX.PAS (Delphi)
Used With All devices

daqSetDefaultErrorHandler allows you to set the driver to use the default error handler
specified for all devices.

daqSetErrorHandler
DLL Function daqSetErrorHandler(DaqHandleT handle, DaqErrorHandlerFPT handler);
C daqSetErrorHandler(DaqHandleT handle, DaqErrorHandlerFPT handler);
Visual BASIC VBdaqSetErrorHandler&(ByVal handle&, ByVal handler&)
Delphi daqSetErrorHandler(handle:DaqHandleT; handler:DaqErrorHandlerFPT)
Parameters
handle Handle to the device to which to attach the specified error handler
handler Pointer to a user defined error handler function.
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqSetDefaultErrorHandler, daqDefaultErrorHandler, daqGetLastError,

daqProcessError
Program References ADCEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ERREX.PAS (Delphi)
Used With All devices

daqSetErrorHandler specifies the routine to call when an error occurs in any command. The
default routine displays a message and then terminates the program. If this is not desirable, use this
command to specify your own routine to be called when errors occur. If you want no action to occur
when a command error is detected, use this command with a null (0) parameter. The default error
routine is daqDefaultHandler.

11-30 daqCommand Reference (Enhanced API) TempBook User’s Manual

daqSetOption
DLL Function daqSetOption(DaqHandleT handle, DWORD chan, DWORD flags, DaqOptionType

optionType, FLOAT optionValue);
C daqSetOption(DaqHandleT handle, DWORD chan, DWORD flags, DaqOptionType

optionType, FLOAT optionValue);
Visual BASIC VBdaqSetOption&(ByVal handle&, ByVal chan&, ByVal flags&, ByVal optionType&,

ByVal optionValue!)
Delphi daqSetOption(Handle:DaqHandleT; chan:DWORD; flags:DWORD;

optionType:DaqOptionType; optionValue:FLOAT)
Parameters
handle The handle to the device for which to set the option
chan The channel number on the device for which the option is to be set
flags Flags specifying the options to use.
optionType Specifies the type of option.
optionValue The value of the option to set
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqAdcExpSetChanOption,
Program References None
Used With All devices

daqSetOption allows the setting of options for a device’s channel/signal path configuration.
• The chan parameter specifies which channel the option applies to.
• The optionType specifies the type of option to apply to the channel.
• The optionValue parameter specifies the value of the option.
• The flags parameter specifies how the option is to be applied.

For more information on the options and their valid settings, refer to the Option Value and Option
Type tables.

daqSetTimeout
DLL Function daqSetTimeout(DaqHandleT handle, DWORD mSecTimeout);
C daqSetTimeout(DaqHandleT handle, DWORD mSecTimeout);
Visual BASIC VBdaqSetTimeout&(ByVal handle&, ByVal mSecTimeout&)
Delphi daqSetTimeout(handle:DaqHandleT; mSecTimeout:DWORD)
Parameters
handle Handle to the device for which the event time-out is to be set
mSecTimeout Specifies time-out (ms) for events
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqWaitForEvent, daqWaitForEvents
Program References None
Used With All devices

daqSetTimeout allows you to set the time-out for waiting on a single event or multiple events.
This function can be used in conjunction with the daqWaitForEvent and
daqWaitForEvents functions to specify a maximum amount of time to wait for the event(s) to
be satisfied.

The mSecTimeout parameter specifies the maximum amount of time (in milliseconds) to wait for
the event(s) to occur. If the event(s) do not occur within the specified time-out, the
daqWaitForEvent and/or daqWaitForEvents will return.

TempBook User’s Manual daqCommand Reference (Enhanced API) 11-31

daqTest
DLL Function daqTest(DaqHandleT handle, DaqTestCommand command, DWORD count, PBOOL

cmdAvailable, PDWORD result);
C daqTest(DaqHandleT handle, DaqTestCommand command, DWORD count, PBOOL

cmdAvailable, PDWORD result);
Visual BASIC VBdaqTest&(ByVal handle&, ByVal command&, ByVal count&, cmdAvailable&, result&)
Delphi [not supported]
Parameters
handle Handle to the device for which the test is to be performed
command Specifies the type of test to be run
count Optional parameter which specifies the length of the test
cmdAvailable Return Boolean indicating the availability of the test for the device
result Pointer to the test result field
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqOpen
Program References None
Used With All devices

daqTest allows you to test a Daq* device for specific functionality. Test types vary, and test
results are based on the type of test requested. Tests can only be performed on valid, opened Daq*
devices. If there are problems with the test, be sure to check the device for proper configuration and
that the device is powered-on and properly connected.

The command parameter specifies the test to run. There are two main types of tests: resource and
performance.

Resource tests are pass/fail and are useful in determining if the device has the appropriate resources
to function efficiently. If one or more of the resource tests fail, the Daq Configuration utility (found
in the operating system’s Control Panel) may be used to change the resource settings related to the
problem. Valid resource test types are defined as follows:
• DtsBaseAddressValid - This test will indicate if there is a problem communicating with

the device at its currently specified base address. A non-zero in the result parameter will
indicate a failed condition.

• DtsInterruptLevelValid - This test will indicate if there is a problem with performing
acquisitions using interrupts. A non-zero in the result parameter will indicate a failed
condition. If this is the case, the interrupts may not be properly configured (if the device is a
DaqBook, the LPT interrupts may not be enabled on the system) or an interrupt conflict exists
with another device.

• DtsDmaChannelValid - (DaqBoard only) This test will indicate if there is a problem with
performing acquisitions through DMA transfers with the currently configured DMA channel for
the device. A non-zero in the result parameter will indicate a failed condition. If this is the
case, DMA may not be enabled for the device or a conflict may exist with another device.

Performance tests measure the speed at which certain operations can be performed on the device.
In general, the performance test results indicate the maximum rate at which the operation can be
performed on the device. The valid performance test types are defined as follows:
• DtsAdcFifoInputSpeed - This test will determine the maximum rate at which analog

input can be acquired and transferred to system memory. Analog input performance results will
be returned in the result parameter with units of samples/second.

• DtsDacFifoOutputSpeed - (DaqBoard only) This test will determine the maximum rate
at which analog output data can be read from system memory and transferred to the device’s
DAC FIFO. Analog output performance results will be returned in the result parameter with
units of samples/second.

• DtsIOInputSpeed - This test will determine the maximum rate at which digital input can
be read from the device’s DIO port and transferred to system memory. Digital input
performance results will be returned in the result parameter with units of bytes/second.

• DtsIOOutputSpeed - This test will determine the maximum rate at which digital output can
be read from system memory and output to the device’s DIO port. Digital output performance
results will be returned in the result parameter with units of bytes/second.

The cmdAvailable parameter is a pointer to a Boolean value that indicates whether or not the
specified test is available for the device.

11-32 daqCommand Reference (Enhanced API) TempBook User’s Manual

The count parameter can be used to indicate the duration or length of the test. For instance, a
resource test will be run count times; and if any one iteration of the test fails, it will indicate an
overall failure of the test. For a performance test, the count parameter will indicate the number of
times to run the test, and the test result will be an average of all the tests performed.

daqWaitForEvent
DLL Function daqWaitForEvent(DaqHandleT handle, DaqTransferEvent daqEvent);
C daqWaitForEvent(DaqHandleT handle, DaqTransferEvent daqEvent);
Visual BASIC VBdaqWaitForEvent&(ByVal handle&, ByVal daqEvent&)
Delphi daqWaitForEvent(handle:DaqHandleT; daqEvent:DaqTransferEvent)
Parameters
handle Handle of the device for which to wait of the specified event
daqEvent Specifies the event to wait on
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqWaitForEvents, daqSetTimout
Program References ADCEX1.C, DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)
Used With All devices

daqWaitForEvent allows you to wait on a specific Daq* event to occur on the specified device.
This function will not return until the specified event has occurred or the wait has timed out—
whichever comes first. The event time-out can be set with the daqSetTimout function. See the
Transfer Event Definitions table for event definitions.

daqWaitForEvents
DLL Function daqWaitForEvents(DaqHandleT *handles, DaqTransferEvent *daqEvents,

DWORD eventCount, BOOL *eventSet, DaqWaitMode waitMode);
C daqWaitForEvents(DaqHandleT *handles, DaqTransferEvent *daqEvents,

DWORD eventCount, BOOL *eventSet, DaqWaitMode waitMode);
Visual BASIC VBdaqWaitForEvents&(handles&(), daqEvents&(), ByVal eventCount&, eventSet&(),

ByVal waitMode&)
Delphi daqWaitForEvents(handles:DaqHandlePT; daqEvents:DaqTransferEventP;

eventCount:DWORD; eventSet:PLONGBOOL; waitMode:DaqWaitMode)
Parameters
*handles Pointer to an array of handles which represent the list of device on which to wait for the events
*daqEvents Pointer to an array of events which represents the list of events to wait on
eventCount Number of defined events to wait on
*eventSet Pointer to an array of Booleans indicating if the events have been satisfied.
waitMode Specifies the mode for the wait
Returns DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqWaitForEvent, daqSetTimeout
Program References None
Used With All devices

daqWaitForEvents allows you to wait on specific Daq* events to occur on the specified
devices. This function will wait on the specified events and will return based upon the criteria
selected with the waitMode parameter. A time-out for all events can be specified using the
daqSetTimeout command.

Events to wait on are specified by passing an array of event definitions in the events parameter.
The number of events is specified with the eventCount parameter. See the Transfer Event
Definitions table for events parameter definitions. Also see the Transfer Event Wait Mode
Definitions table for waitMode parameter definitions.

TempBook User’s Manual daqCommand Reference (Enhanced API) 11-33

daqZeroConvert
DLL Function daqZeroConvert(PWORD counts, DWORD scans);
C daqZeroConvert(PWORD counts, DWORD scans);
Visual BASIC VBdaqZeroConvert&(counts%(), ByVal scans&)
Delphi daqZeroConvert(counts:PWORD; scans:DWORD)
Parameters
counts The raw data from one or more scans.
scans The number of scans of raw data in the counts array.
Returns DerrZCInvParam - Invalid parameter value

DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqZeroSetup, daqZeroSetupConvert, daqZeroDbk19
Program References None
Used With All devices

daqZeroConvert compensates one or more scans according to the previously called
daqZeroSetup function. This function will modify the array of data passed to it.

daqZeroSetup
DLL Function daqZeroSetup(DWORD nscan, DWORD zeroPos, DWORD readingsPos, DWORD nReadings);
C daqZeroSetup(DWORD nscan, DWORD zeroPos, DWORD readingsPos, DWORD nReadings);
Visual BASIC VBdaqZeroSetup&(ByVal nscan&, ByVal zeroPos&, ByVal readingsPos&, ByVal

nReadings&)
Delphi daqZeroSetup(nscan:DWORD; zeroPos:DWORD; readingsPos:DWORD; nreadings:DWORD)
Parameters
nscan The number of readings in a single scan.
zeroPos The position of the zero reading within the scan
readingsPos The position of the readings to be zeroed within the scan.
nReadings The number of readings immediately following the zero reading that are sampled at the same gain as the

zero reading.
Returns DerrZCInvParam - Invalid parameter value

DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqZeroConvert, daqZeroSetupConvert, daqZeroDbk19
Program References None
Used With All devices

daqZeroSetup configures the location of the shorted channel and the channels to be zeroed
within a scan, the size of the scan, and the number of readings to zero. However, this function does
not do the actual conversion. A non-zero return value indicates an invalid parameter error.

11-34 daqCommand Reference (Enhanced API) TempBook User’s Manual

daqZeroSetupConvert
DLL Function daqZeroSetupConvert(DWORD nscan, DWORD zeroPos, DWORD readingsPos, DWORD

nReadings, PWORD counts, DWORD scans);
C daqZeroSetupConvert(DWORD nscan, DWORD zeroPos, DWORD readingsPos, DWORD

nReadings, PWORD counts, DWORD scans);
Visual BASIC VBdaqZeroSetupConvert&(ByVal nscan&, ByVal zeroPos&, ByVal readingsPos&, ByVal

nReadings&, counts%(), ByVal scans&)
Delphi daqZeroSetupConvert(nscan:DWORD; zeroPos:DWORD; readingsPos:DWORD;

nreadings:DWORD; counts:PWORD; scans:DWORD)
Parameters
nscan The number of readings in a single scan.
zeroPos The position of the zero reading within the scan
readingsPos The position of the readings to be zeroed within the scan.
nReadings The number of readings immediately following the zero reading that are sampled at the same gain as the

zero reading.
counts The raw data from one or more scans.
scans The number of scans of raw data in the counts array.
Returns DerrZCInvParam - Invalid parameter value

DerrNoError - No error (also, refer to API Error Codes on page 11-39)
See Also daqZeroSetup, daqZeroConvert, daqZeroDbk19
Program References None
Used With All devices

daqZeroSetupConvert performs both the setup and convert steps with one call. This is useful
when the zero compensation needs to be performed multiple times because data was read from
channels at different gains or from different boards.

TempBook User’s Manual daqCommand Reference (Enhanced API) 11-35

API Reference Tables
These tables provide information for programming with the Daq* Application Programming Interface.
Information includes channel identification and error codes, as well as valid parameter values and
descriptions. The tables are organized as follows:

API Parameter Reference Tables
Table Title Sub-Title/Parameter/Description Page
Daq Device Property Definitions -
daqGetDeviceProperties

Identifies the format (DWORD, STRING, or FLOAT) for property parameters 11-36

Event-Handling Definitions Transfer Event Definitions - DaqTransferEvent
Transfer Event Wait Mode Definitions - DaqWaitMode

11-36

Hardware Information Definitions Hardware Information Selector Definitions - DaqHardwareInfo
Hardware Version Definitions - DaqHardwareVersion

11-36

ADC Trigger Source Definitions DaqAdcTriggerSource
DaqEnhTrigSensT

11-37

ADC Miscellaneous Definitions ADC Flag Definitions - DaqAdcFlag
Frequency vs Period - DaqAdcRateMode
ADC Acquisition Mode Definitions - DaqAdcAcqMode
ADC Transfer Mask Definitions - DaqAdcTransferMask
ADC Clock Source Definitions - DaqAdcClockSource
ADC File Open Mode Definitions - DaqAdcOpenMode
ADC Acquisition/Transfer Active Flag Definitions - DaqAdcActiveFlag
ADC Acquisition State - DaqAdcAcqState
ADC BufferTransfer Mask- DaqAdcBufferXferMask

11-37

TempBook Definitions Unipolar Thermocouple Gain Definitions
Bipolar Thermocouple Gain Definitions
Thermocouple Definitions
Voltage Gain Definitions

11-38

General I/O Definitions I/O Operation Code Definitions - DaqIOOperationCode 11-38
DaqTest Command Definitions DaqTestCommand 11-38
Calibration Input Signal Sources DaqCalInputT

DaqCalTableTypeT
11-38

API Error Codes Identifies API errors by number and description 11-38

11-36 daqCommand Reference (Enhanced API) TempBook User’s Manual

Daq Device Property Definitions - daqGetDeviceProperties
Property Description Format
deviceType Main Chassis Device Type Definition DWORD
basePortAddress Port Address (ISA Addr, LPT Port, etc) DWORD
dmaChannel DMA Channel (if applicable) DWORD
protocol Interface Protocol DWORD
alias Device Alias Name STRING
maxAdChannels Maximum A/D channels (with full expansion) DWORD
maxDaChannels Maximum D/A channels (with full expansion) DWORD
maxDigInputBits Maximum Dig. Inputs (with full expansion) DWORD
maxDigOutputBits Maximum Dig. Outputs (with full expansion) DWORD
maxCtrChannels Maximum Counter/Timers (with full expansion) DWORD
mainUnitAdChannels Maximum Main Unit A/D channels (no expansion) DWORD
mainUnitDaChannels Maximum Main Unit D/A channels (no expansion) DWORD
mainUnitDigInputBits Maximum Main Unit Digital Inputs (no expansion) DWORD
mainUnitDigOutputBits Maximum Main Unit Digital Outputs (no expansion) DWORD
mainUnitCtrChannels Maximum Main Unit Counter/Timer channels (no exp.) DWORD
adFifoSize A/D on-board FIFO Size DWORD
daFifoSize D/A on-board FIFO Size DWORD
adResolution Maximum A/D Converter Resolution DWORD
daResolution Maximum D/A Converter Resolution DWORD
adMinFreq Minimum A/D Conversion Scan Frequency (Hz) FLOAT
adMaxFreq Maximum A/D Conversion Scan Frequency (Hz) FLOAT
daMinFreq Minimum D/A Output Update Frequency (Hz) FLOAT
daMaxFreq Maximum D/A Output Update Frequency (Hz) FLOAT

Event-Handling Definitions

Transfer Event Definitions -
daqTransferEvent

Transfer Event Wait Mode Definitions -
daqWaitMode

DteAdcData 0 DwmNoWait 0
DteAdcDone 1 DwmWaitForAny 1
DteDacData 2 DwmWaitForAll 2
DteDacDone 3
DteIOData 4
DteIODone 5

Hardware Information Definitions

Hardware Information Selector
Definitions - daqHardwareInfo

Hardware Version Definitions -
daqHardwareVersion

Definition Value Definition Value
DhiHardwareVersion 0 DaqBook100 0
DhiProtocol 1 DaqBook112 1
DhiAdcBits 2 DaqBook120 2
DhiADmin 3 DaqBook200 3
DhiADmax 4 DaqBook216 4

DaqBoard100 5
DaqBoard112 6
DaqBoard200 7
DaqBoard216 8
Daq112 9
Daq216 10
WaveBook512 11
WaveBook516 12
TempBook66 13

TempBook User’s Manual daqCommand Reference (Enhanced API) 11-37

ADC Trigger Source Definitions
daqAdcTriggerSource DaqEnhTrigSensT

DatsImmediate 0 DetsRisingEdge 0
DatsSoftware 1 DetsFallingEdge 1
DatsAdcClock 2 DetsAboveLevel 2
DatsGatedAdcClock 3 DetsBelowLevel 3
DatsExternalTTL 4 DetsAfterRisingEdge 4
DatsHardwareAnalog 5 DetsAfterFallingEdge 5
DatsSoftwareAnalog 6 DetsAfterAboveLevel 6
DatsEnhancedTrig 7 DetsAfterBelowLevel 7

ADC Miscellaneous Definitions

ADC Flag Definitions - daqAdcFlag

Analog/High Speed Digital Flag Unsigned/Signed ADC Data Flag SSH Hold/Sample Flag - For Internal Use Only
DafAnalog 00h DafUnsigned 00h DafSSHSample 00h
DafHighSpeedDigita 01h DafSigned 04h DafSSHHold 10h

Unipolar/Bipolar Flag Single Ended/Differential Flag Clear or shift the least significant nibble - typically
used with 12-bit ADCs

DafUnipolar 00h DafSingleEnded 00h DafIgnoreLSNibble 00h
DafBipolar 02h DafDifferential 08h DafClearLSNibble 20h

DafShiftLSNibble 40h

Frequency vs Period -
daqAdcRateMode

ADC Acquisition Mode
Definitions - daqAdcAcqMode

ADC Transfer Mask Definitions -
daqAdcTransferMask

DarmPeriod 0 DaamNShot 0 DatmCycleOff 00h
DarmFrequency 1 DaamNShotRearm 1 DatmCycleOn 01h

DaamInfinitePost 2 DatmUpdateBlock 00h
DaamPrePost 3 DatmUpdateSingle 02h

DatmWait 00h
DatmReturn 04h
DatmUserBuf 00h
DatmDriverBuf 08h

ADC Clock Source Definitions
-daqAdcClockSource

ADC File Open Mode Definitions
- daqAdcOpenMode

ADC Acquisition/Transfer Active Flag
Definitions - daqAdcActiveFlag

DacsAdcClock 0 DaomAppendFile 0 DaafAcqActive 01h
DacsGatedAdcClock 1 DaomWriteFile 1 DaafAcqTriggered 02h
DacsTriggerSource 2 DaomCreateFile 2 DaafTransferActive 04h

ADC Acquisition State -
daqAdcAcqState

ADC Buffer Transfer Mask -
daqAdcBufferXferMask

DaasPreTrig 0 DabtmOldest 1
DaasPostTrig 1 DabtmNewest 2

DabtmWait 3
DabtmReturn 4

11-38 daqCommand Reference (Enhanced API) TempBook User’s Manual

TempBook Definitions

Unipolar Thermocouple Gain
Definitions

Bipolar Thermocouple Gain
Definitions

TbkUniCJC TgainX100 TbkBiCJC TgainX50
TbkUniTypeJ TgainX200 TbkBiTypeJ TgainX100
TbkUniTypeK TgainX200 TbkBiTypeK TgainX100
TbkUniTypeT TgainX200 TbkBiTypeT TgainX200
TbkUniTypeE TgainX100 TbkBiTypeE TgainX50
TbkUniTypeN28 TgainX200 TbkBiTypeN28 TgainX100
TbkUniTypeN14 TgainX200 TbkBiTypeN14 TgainX100
TbkUniTypeS TgainX200 TbkBiTypeS TgainX200
TbkUniTypeR TgainX200 TbkBiTypeR TgainX200
TbkUniTypeB TgainX200 TbkBiTypeB TgainX200

Thermocouple Definitions Voltage Gain Definitions
TbkTCTypeJ 18 TgainX1 0
TbkTCTypeK 19 TgainX2 1
TbkTCTypeT 20 TgainX5 2
TbkTCTypeE 21 TgainX10 3
TbkTCTypeN28 22 TgainX20 5
TbkTCTypeN14 23 TgainX50 6
TbkTCTypeS 24 TgainX100 7
TbkTCTypeR 25 TgainX200 11
TbkTCTypeB 26

Calibration Input Signal Sources
DaqCalInputT
DciNormal 0 External signal from device input connector(s)
DciCalGround 1 Internal calibration ground signal
DciCal5V 2 Internal 5 V calibration signal
DciCal500mV 3 Internal 500 mV calibration signal
DaqCalTableTypeT
DcttFactory 0 Factory calibration constants
DcttUser 1 User-defined calibration constants

General I/O Definitions

I/O Operation Code Definitions -
daqIOOperationCode
DioocReadByte 0
DioocWriteByte 1
DioocReadWord 2
DioocWriteWord 3
DioocReadDWord 4
DioocWriteDWord 5

daqTest Command Definitions
DaqTestCommand
DtstBaseAddressValid 0
DtstInterruptLevelValid 1
DtstDmaChannelValid 2
DtstAdcFifoInputSpeed 3
DtstDacFifoOutputSpeed 4
DtstIOInputSpeed 5
DtstIOOutputSpeed 6

TempBook User’s Manual daqCommand Reference (Enhanced API) 11-39

API Error Codes
Error
Name

Code #
hex - dec Description

DerrNoError 00h - 0 No error
DerrBadChannel 01h - 1 Specified LPT channel was out-of-range
DerrNotOnLine 02h - 2 Requested device is not online
DerrNoDaqbook 03h - 3 DaqBook is not on the requested channel
DerrBadAddress 04h - 4 Bad function address
DerrFIFOFull 05h - 5 FIFO Full detected, possible data corruption
DerrBadDma 06h - 6 Bad or illegal DMA channel or mode specified for device
DerrBadInterrupt 07h - 7 Bad or illegal INTERRUPT level specified for device
DerrDmaBusy 08h - 8 DMA is currently being used
DerrInvChan 10h - 16 Invalid analog input channel
DerrInvCount 11h - 17 Invalid count parameter
DerrInvTrigSource 12h - 18 Invalid trigger source parameter
DerrInvLevel 13h - 19 Invalid trigger level parameter
DerrInvGain 14h - 20 Invalid channel gain parameter
DerrInvDacVal 15h - 21 Invalid DAC output parameter
DerrInvExpCard 16h - 22 Invalid expansion card parameter
DerrInvPort 17h - 23 Invalid port parameter
DerrInvChip 18h - 24 Invalid chip parameter
DerrInvDigVal 19h - 25 Invalid digital output parameter
DerrInvBitNum 1Ah - 26 Invalid bit number parameter
DerrInvClock 1Bh - 27 Invalid clock parameter
DerrInvTod 1Ch - 28 Invalid time-of-day parameter
DerrInvCtrNum 1Dh - 29 Invalid counter number
DerrInvCntSource 1Eh - 30 Invalid counter source parameter
DerrInvCtrCmd 1Fh - 31 Invalid counter command parameter
DerrInvGateCtrl 20h - 32 Invalid gate control parameter
DerrInvOutputCtrl 21h - 33 Invalid output control parameter
DerrInvInterval 22h - 34 Invalid interval parameter
DerrTypeConflict 23h - 35 An integer was passed to a function requiring a character
DerrMultBackXfer 24h - 36 A second background transfer was requested
DerrInvDiv 25h - 37 Invalid Fout divisor
Temperature Conversion Errors
DerrTCE_TYPE 26h - 38 TC type out-of-range
DerrTCE_TRANGE 27h - 39 Temperature out-of-CJC-range
DerrTCE_VRANGE 28h - 40 Voltage out-of-TC-range
DerrTCE_PARAM 29h - 41 Unspecified parameter value error
DerrTCE_NOSETUP 2Ah - 42 dacTCConvert called before dacTCSetup
DaqBook
DerrNotCapable 2Bh - 43 Device is incapable of function
Background
DerrOverrun 2Ch - 44 A buffer overrun occurred
Zero and Cal Conversion Errors
DerrZCInvParam 2Dh - 45 Unspecified parameter value error
DerrZCNoSetup 2Eh - 46 dac…Convert called before dac…Setup
DerrInvCalFile 2Fh - 47 Cannot open the specified cal file
Environmental Errors
DerrMemLock 30h - 48 Cannot lock allocated memory from operating system
DerrMemHandle 31h - 49 Cannot get a memory handle from operating system
Pre-trigger acquisition Errors
DerrNoPreTActive 32h - 50 No pre-trigger configured
Daq FIFO Errors (DaqBoard only)
DerrInvDacChan 33h - 51 DAC channel does not exist
DerrInvDacParam 34h - 52 DAC parameter is invalid
DerrInvBuf 35h - 53 Buffer points to NULL or buffer size is zero
DerrMemAlloc 36h - 54 Could not allocate the needed memory
DerrUpdateRate 37h - 55 Could not achieve the specified update rate
DerrInvDacWave 38h - 56 Could not start waveforms because of missing or invalid parameters
DerrInvBackDac 39h - 57 Could not start waveforms with background transfers
DerrInvPredWave 3Ah - 58 Predefined waveform not supported
RTD Conversion Errors
DerrRtdValue 3Bh - 59 rtdValue out-of-range
DerrRtdNoSetup 3Ch - 60 rtdConvert called before rtdSetup
DerrRtdArraySize 3Dh - 61 Temperature array not large enough
DerrRtdParam 3Eh - 62 Incorrect RTD parameter

11-40 daqCommand Reference (Enhanced API) TempBook User’s Manual

Error
Name

Code #
hex - dec Description

DerrInvBankType 3Fh - 63 Invalid bank-type specified
DerrBankBoundary 40h - 64 Simultaneous writes to DBK cards in different banks not allowed
DerrInvFreq 41h - 65 Invalid scan frequency specified
DerrNoDaq 42h - 66 No Daq112B/216B installed
DerrInvOptionType 43h - 67 Invalid option-type parameter
DerrInvOptionValue 44h - 68 Invalid option-value parameter
New API Error Codes
DerrTooManyHandles 60h - 96 No more handles available to open
DerrInvLockMask 61h - 97 Only a part of the resource is already locked, must be all or none
DerrAlreadyLocked 62h - 98 All or part of the resource was locked by another application
DerrAcqArmed 63h - 99 Operation not available while an acquisition is armed
DerrParamConflict 64h - 100 Each parameter is valid, but the combination is invalid
DerrInvMode 65h - 101 Invalid acquisition/wait/dac mode
DerrInvOpenMode 66h - 102 Invalid file-open mode
DerrFileOpenError 67h - 103 Unable to open file
DerrFileWriteError 68h - 104 Unable to write file
DerrFileReadError 69h - 105 Unable to read file
DerrInvClockSource 6Ah - 106 Invalid acquisition mode
DerrInvEvent 6Bh - 107 Invalid transfer event
DerrTimeout 6Ch - 108 Time-out on wait
DerrInitFailure 6Dh - 109 Unexpected result occurred while initializing the hardware
DerrBufTooSmall 6Eh - 110 Unexpected result occurred while initializing the hardware
DerrInvType 6Fh - 111 Invalid acquisition/wait/dac mode
DerrArraySize 70h - 112 Used as a catch all for arrays not large enough
DerrBadAlias 71h - 113 Invalid alias names for Vxd lookup
DerrInvCommand 72h - 114 Invalid command
DerrInvHandle 73h - 115 Invalid handle
DerrNoTransferActive 74h - 116 Transfer not active
DerrNoAcqActive 75h - 117 Acquisition not active
DerrInvOpstr 76h - 118 Invalid operation string used for enhanced triggering
DerrDspCommFailure 77h - 119 Device with DSP failed communication
DerrEepromCommFailure 78h - 120 Device with EEPROM failed communication
DerrInvEnhTrig 79h - 121 Device using enhanced trigger detected invalid trigger type
DerrInvCalConstant 7Ah - 122 User calibration constant out of range
DerrInvErrorCode 7Bh - 123 Invalid error code
DerrInvAdcRange 7Ch - 124 Invalid analog input voltage range parameter
DerrInvCalTableType 7Dh - 125 Invalid calibration table type
DerrInvCalInput 7Eh - 126 Invalid calibration input signal selection
DerrInvRawDataFormat 7Fh - 127 Invalid raw-data format selection
DerrNotImplemented 80h - 128 Feature/function not implemented yet
DerrInvDioDeviceType 81h - 129 Invalid digital I/O device type
DerrInvPostDataFormat 82h - 130 Invalid post-processing data format selection

Differential Measurement Configurations Appendix

TempBook User’s Manual Appendix A-1

Floating Differential
Floating differential measurements are generally made when low-level signals must be measured in the
presence of relatively high levels of common mode noise. The most common example would be a non-
grounded thermocouple. When the signal source has no direct connection to the system analog common,
one must be provided. The easiest way to do this on the TempBook is to use the built-in biasing resistors
by closing the corresponding input channel DIP switches (S1 and S2 on the termination card as described in
chapter 2). As an alternative, a resistor can be connected between one of the two signal lines (usually the
lower in potential) and common. A resistor of 10 KΩ to 100 KΩ is satisfactory (less noise with the lower
values).

Floating Differential Configuration

Referenced Differential
Referenced differential measurement is used when measuring several voltages. However, the voltages
cannot share the same common node as a group of single-ended measurements might. An example is to
measure several currents via shunts which happen to share a common supply terminal along a bus. The
weakness in a single-ended hookup is that current flow through the common bus can introduce substantial
errors that can be indistinguishable from the real values measured. The need for the system common to be
connected to the common supply terminal is shown in the figure.

Referenced Differential Configuration

A-2 Appendix TempBook User’s Manual

- Notes

WARRANTY/DISCLAIMER
OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a
period of 13 months13 months from date of purchase. OMEGA Warranty adds an additional one (1) month grace
period to the normal one (1) year product warrantyone (1) year product warranty to cover handling and shipping time. This
ensures that OMEGA's customers receive maximum coverage on each product.
If the unit should malfunction, it must be returned to the factory for evaluation. OMEGA's Customer
Service Department will issue an Authorized Return (AR) number immediately upon phone or written
request. Upon examination by OMEGA, if the unit is found to be defective it will be repaired or replaced at
no charge. OMEGA's WARRANTY does not apply to defects resulting from any action of the purchaser,
including but not limited to mishandling, improper interfacing, operation outside of design limits,
improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of
having been tampered with or shows evidence of being damaged as a result of excessive corrosion; or
current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating
conditions outside of OMEGA's control. Components which wear are not warranted, including but not
limited to contact points, fuses, and triacs.
OMEGA is pleased to offer suggestions on the use of its various products. However,OMEGA is pleased to offer suggestions on the use of its various products. However,
OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for anyOMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any
damages that result from the use of its products in accordance with information provided bydamages that result from the use of its products in accordance with information provided by
OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by it will beOMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by it will be
as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES ORas specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR
REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OFREPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF
TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITYTITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OFAND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF
LIABILITY: The remedies of purchaser set forth herein are exclusive and the total liability ofLIABILITY: The remedies of purchaser set forth herein are exclusive and the total liability of
OMEGA with respect to this order, whether based on contract, warranty, negligence,OMEGA with respect to this order, whether based on contract, warranty, negligence,
indemnification, strict liability or otherwise, shall not exceed the purchase price of theindemnification, strict liability or otherwise, shall not exceed the purchase price of the
component upon which liability is based. In no event shall OMEGA be liable forcomponent upon which liability is based. In no event shall OMEGA be liable for
consequential, incidental or special damages.consequential, incidental or special damages.
CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a "Basic
Component" under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical
applications or used on humans. Should any Product(s) be used in or with any nuclear installation or
activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility
as set forth in our basic WARRANTY/DISCLAIMER language, and additionally, purchaser will indemnify
OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the
Product(s) in such a manner.

RETURN REQUESTS/INQUIRIES
Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE
RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN
(AR) NUMBER FROM OMEGA'S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID
PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return
package and on any correspondence.
The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent
breakage in transit.
FOR WARRANTYWARRANTY RETURNS, please have the
following information available BEFORE
contacting OMEGA:
1. P.O. number under which the product was

PURCHASED,
2. Model and serial number of the product under

warranty, and
3. Repair instructions and/or specific problems

relative to the product.

FOR NON-WARRANTYNON-WARRANTY REPAIRS, consult OMEGA
for current repair charges. Have the following
information available BEFORE contacting OMEGA:
1. P.O. number to cover the COST

of the repair,
2. Model and serial number of the product, and
3. Repair instructions and/or specific problems

relative to the product.

OMEGA's policy is to make running changes, not model changes, whenever an improvement is possible. This affords
our customers the latest in technology and engineering.
OMEGA is a registered trademark of OMEGA ENGINEERING, INC.
© Copyright 1997 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without prior
written consent of OMEGA ENGINEERING, INC.

TEMPERATURE
þ Thermocouple, RTD & Thermistor Probes, Connectors, Panels & Assemblies
þ Wire: Thermocouple, RTD & Thermistor
þ Calibrators & Ice Point References
þ Recorders, Controllers & Process Monitors
þ Infrared Pyrometers

PRESSURE, STRAIN AND FORCE
þ Transducers & Strain Gauges
þ Load Cells & Pressure Gauges
þ Displacement Transducers
þ Instrumentation & Accessories

FLOW/LEVEL
þ Rotameters, Gas Mass Flowmeters & Flow Computers
þ Air Velocity Indicators
þ Turbine/Paddlewheel Systems
þ Totalizers & Batch Controllers

pH/CONDUCTIVITY
þ pH Electrodes, Testers & Accessories
þ Benchtop/Laboratory Meters
þ Controllers, Calibrators, Simulators & Pumps
þ Industrial pH & Conductivity Equipment

DATA ACQUISITION
þ Data Acquisition & Engineering Software
þ Communications-Based Acquisition Systems
þ Plug-in Cards for Apple, IBM & Compatibles
þ Datalogging Systems
þ Recorders, Printers & Plotters

HEATERS
þ Heating Cable
þ Cartridge & Strip Heaters
þ Immersion & Band Heaters
þ Flexible Heaters
þ Laboratory Heaters

ENVIRONMENTAL
MONITORING AND CONTROL
þ Metering & Control Instrumentation
þ Refractometers
þ Pumps & Tubing
þ Air, Soil & Water Monitors
þ Industrial Water & Wastewater Treatment
þ pH, Conductivity & Dissolved Oxygen Instruments

M2276

